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Background knowledge
• Supervised learning

• Given n training data/samples
• Generated by a ground-truth function and noise

• Determine values of parameters of a model to fit those training 
data (e.g, training by gradient descent)
• Training error: how well the model fit all training data

• Test error: evaluate the performance on unseen test data

• Overfitting & overparameterization
• When a model has enough many parameters, it can completely fit 

all training data, i.e., training error is zero

• Overfitted linear regression models 𝑦 = 𝒙𝑇𝜷
• Matrix equation with n samples: 𝐘 = 𝐗𝑇𝜷 ∈ 𝐑𝑛

• Every element of 𝜷 is a parameter (determined by training)
• Every element of 𝒙 is a feature: 𝒙 ∈ 𝐑𝑝(p is the num of features)

• Gaussian feature: every element of 𝒙 follows i.i.d. Gaussian distribution
• Fourier feature: 𝒙𝑇 = 1 cos 𝜃 sin 𝜃 cos 2𝜃 sin 2𝜃 ⋯

• Min l2-norm solution: 3



A simple 
example of 
overfitting

• A ground-truth function: 𝑓 𝑥 = 𝑥

• Three training data (with noise): (1, 1.8), (2, 1.5), (3, 3.5)

• Model A with 2 parameters: መ𝑓 𝑥 = 𝑎𝑥 + 𝑏

• Model B with 3 parameters: መ𝑓 𝑥 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐

• Training by minimize mean-square-error (MSE)
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The bias-variance tradeoff

• “Sweet spot” is usually achieved by regularization (e.g. LASSO 
and ridge regression) to ensure that overfitting does not occur

“Sweet spot”
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Overfitting is usually harmful, however…

• Deep neural networks (DNNs) can generalize well even 
when they overfit the training data [Zhang et al, 2017]

Training error with perturbed/noisy data

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. (2017). “Understanding deep learning requires 
rethinking generalization.” ICLR 2017.

Test error
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Motivation
• Why can DNNs generalize well when heavily 

overparameterized [Zhang et al, 2017]?

• Recent attempts: “double descent” for linear 
regression with simple features (e.g., Gaussian 
and Fourier features) [See, e.g., Belkin et al., 2018, 2019; Bartlett et 

al., 2019; Hastie et al., 2019; Mei and Montanari, 2019; Muthukumar et al., 2019]

• double descent: test error descends again in the 
overparameterized regime
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min-𝐿2 with simple features

p=n: # of samples

Open question: do 
overparameterized neural 
networks also experience a 
similar descent behavior?



Neural Tangent Kernel (NTK) model (Jacot et al., 2018)

output

Fix top-layer weights

Only train bottom-layer weights

input

• NTK: a linear approximation of neural network
• For such a wide and fully-connected two-layer neural network, both the 

weights and activation patterns do not change much after gradient 
descent training with a small step size [Li & Liang, 2018; Du et al., 2018]

• Features of NTK model are formed by the nonlinear activation function.

• We study the descent behavior of min-𝑙2-norm solutions.
• More details will be discussed later in the problem setup. 

ReLU (Rectifier Linear Unit): max(0, 𝑥)
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Related work
• Generalization error of “random feature” (RF) model where p, n, 

and d grow proportionally to infinity [e.g., Mei & Montanari, 2019; 
d’Ascoli et al., 2020]
• The RF model only trains top layer weights.
• Only linear functions can be learned.
• We are interested in the situation that p>>n.

• Expressiveness of NTK and RF model [e.g., Ghorbani et at., 2019] 
• Can approximate highly non-linear ground-truth functions with 

sufficiently many neurons.
• Cannot characterize the generalization performance.

• Overfitted generalization error of NTK (similar to our setting) [e.g., 
Arora et al., 2019; Satpathi & Srikant, 2021; Fiat et at., 2019]
• Provide an upper bound when p is larger than a threshold
• Does not contain p in the expression of their upper bound, thus cannot 

characterize the descent behavior

• Other related settings: NTK without overfitting [e.g., Allen-Zhu et at., 
2019], classification by NTK [e.g., Ji & Telgarsky, 2019]
• Different from our setting where we consider overfitted solutions for 

regression.
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Problem setup

Change of the output after training:

initial outputoutput of after training

similar when ∆𝐕 is small.
NTK assumes they are the same.

p neurons

j-th neuron
change of bottom 

layer weights

top layer 
weights

initial bottom 
layer weights

activation pattern 
by ReLU
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An example of 2-layer NN where num of neurons p=3, input dim d=2



Problem setup (Cont’d)
• After training, the change of the output can be approximated by a linear model

activation pattern 
of initial state

feature vector

top layer 
weights

change of bottom 
layer weights

Min-𝑙2-norm solution:

Trained model:

Ground-truth data model

The feature vector is very different from i.i.d. Gaussian or Fourier features.
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Main Results

num of training data num of neurons

Model complexity (p)
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min-𝑙2 with NTK

min-𝑙2 with simple features

null risk (the error of a model 
that always predicts zero)

Considering the following class of ground-truth functions:

𝜇(∙) is the uniform distribution on the unit sphere 𝑆𝑑−1

𝑔(∙) is any function whose norm is bounded

We provide an upper bound on the test error for finite p (num of neurons)

12When n is larger and noise level is low, the test error decreases to a very small value as p increases



• The first result in the literature showing a descent curve as a function of p for the 
NTK model

• Also the first result characterizing the speed of descent

• The descent of NTK is very different from that of linear models with simple features

For comparison [Arora et al.,2019]:

[Belkin et al.,2019]:

increase as p (num of feature) increases

num of training data num of neurons noise level

𝑞 ≥ 1 can be any large number,
𝐽𝑚(𝑛, 𝑑) is a function of n and d.
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• Prior results in the literature [e.g., Arora et al.,2019] only show an upper bound only 
for p above a threshold, and thus are independent on p



Model complexity (p)
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learnable ground-truth function

not-learnable ground-truth function

lower bound

Ground-Truth Functions: Learnable or Not

• The descent of the NTK model critically depends on the ground-
truth function.

• For the specific NTK model in our work (ReLU without bias), we 
provide a lower bound on the generalization error for not-learnable 
functions
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𝑓 𝜃 = 

𝑘∈{0,1,2,4}

(sin 𝑘𝜃 + cos(𝑘𝜃))

𝑓 𝜃 = 

𝑘∈{3,5,7,9}

(sin 𝑘𝜃 + cos(𝑘𝜃))

Learnable ground-truth function: 
corresponds to linear and even 
power polynomials

Not-learnable ground-truth function: 
corresponds to odd polynomials

Simulation result
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What exactly are the functions in         ? 

Rewrite                         as a convolution

Important property: convolution corresponds to multiplication in the frequency domain 

[Dokmanic & Petrinovic, 2009]

(similar to Fourier coefficients)

h as a “filter” or “channel”

We prove that:

linear and even-power polynomials (e.g., 𝑓 𝒙 = (𝒂𝑇𝒙)4) are learnable (consistent with 
[Arora et al.,2019]), while other odd-power polynomials (e.g., 𝑓 𝒙 = (𝒂𝑇𝒙)3) are not.
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Caution: the set of learnable functions 
depends on the model structure

• [Satpathi & Srikant, 2021] shows that if bias is considered in 
ReLU, then both even-power and odd-power 
polynomials are learnable.

• Although our setting does not include bias in ReLU, we 
can easily derive similar conclusions when bias in ReLU 
is considered. 

• Adding a bias is equivalent to fixing the last element of 
input x by a constant. 

• Even though only a subset of functions are learnable in 
the d-dim space, when projected into a (d-1)-dim 
subspace, they may already span all functions.
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ReLU without bias: max(0, 𝑥)
ReLU with bias:       max(bias, 𝑥)



Conclusion

• We give an upper bound of the generalization error of min-
𝑙2-norm overfitting solutions for 2-layer NTK, which is the 
first known result to characterize the descent curve as a 
function of p for the NTK model.

• We show that the descent behavior of NTK is different from 
that of linear models with simple features (such as Gaussian 
and Fourier features).

• We show that the descent behavior critically depends on 
the ground-truth functions and the model structure.
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