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Background knowledge

e Supervised learning
e Given n training data/samples
e Generated by a ground-truth function and noise

e Determine values of parameters of a model to fit those training
data (e.g, training by gradient descent)

* Training error: how well the model fit all training data
* Test error: evaluate the performance on unseen test data

e Overfitting & overparameterization

* When a model has enough many parameters, it can completely fit
all training data, i.e., training error is zero

« Overfitted linear regression models y = xT 8
* Matrix equation with n samples: Y = XTZ? e R"
* Every element of B8 is a parameter (determined by training)

* Every element of x is a feature: x € RP(p is the num of features)
* Gaussian feature: every element of x follows i.i.d. Gaussian distribution
* Fourier feature: xT = [1 cos8 sinf cos20 sin26 ---]

* Min I12-norm solution: min||3|> subject to Y = X*j



A ground-truth function: f(x) = x

A Si m ple * Three training data (with noise): (1, 1.8), (2, 1.5), (3, 3.5)
exam ple Of  Model A with 2 parameters: f(x) = ax + b
overfitti ng * Model B with 3 parameters: f(x) = ax® + bx + ¢

* Training by minimize mean-square-error (MSE)
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The bias-variance tradeoff

“Overfitting”

Test error
“Sweet spot”

|

Variance

Error

Training error
and bias

[

Model complexity (p)

* “Sweet spot” is usually achieved by regularization (e.g. LASSO
and ridge regression) to ensure that overfitting does not occur



Overfitting is usually harmful, however...

* Deep neural networks (DNNs) can generalize well even
when they overfit the training data
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Motivation

* Why can DNNs generalize well when heavily
overparameterized (zhanget al, 2017)?

Error

* Recent attempts: “double descent” for linear
regression with simple features (e.g., Gaussian

and Fourier featu rES) [See, e.g., Belkin et al., 2018, 2019; Bartlett et
al., 2019; Hastie et al., 2019; Mei and Montanari, 2019; Muthukumar et al., 2019]

* double descent: test error descends again in the
overparameterized regime

Test error
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' Open question: do
' overparameterized neural
min-L, with simple features ' networks also experience a

Training error

| similar descent behavior?

p=n: # of samples

Model co;nplexity (p)



Neural Tangent Kernel (NTK) model e 20

output
Fix top-layer weights
ReLU (Rectifier Linear Unit): max(0, x)
Only train bottom-layer weights
input

 NTK: a linear approximation of neural network
* For such a wide and fully-connected two-layer neural network, both the
weights and activation patterns do not change much after gradient
descent training with a small step size [Li & Liang, 2018; Du et al., 2018]
* Features of NTK model are formed by the nonlinear activation function.
* We study the descent behavior of min-[,-norm solutions.

* More details will be discussed later in the problem setup.



Related work

* Generalization error of “random feature” (RF) model where p, n,

and d grow proportionally to infinity [e.g., Mei & Montanari, 2019;
d’Ascoli et al., 2020]

* The RF model only trains top layer weights.
* Only linear functions can be learned.
* We are interested in the situation that p>>n.

* Expressiveness of NTK and RF model [e.g., Ghorbani et at., 2019]

e Can approximate highly non-linear ground-truth functions with
sufficiently many neurons.

e Cannot characterize the generalization performance.

* Overfitted generalization error of NTK (similar to our setting) [e.g.,
Arora et al., 2019; Satpathi & Srikant, 2021; Fiat et at., 2019]

* Provide an upper bound when p is larger than a threshold

* Does not contain p in the expression of their upper bound, thus cannot
characterize the descent behavior

e Other related settings: NTK without overfitting [e.g., Allen-Zhu et at.,

2019], classification by NTK [e.g., Ji & Telgarsky, 2019]

* Different from our setting where we consider overfitted solutions for
regression.



Problem setup

output

wl/ U\’\’wg top layer weights w

hidden-layer: RelLU

V|l ‘M ‘Vo bottom-layer weights V
- T

input ® = [r; 9]

An example of 2-layer NN where num of neurons p=3, input dim d=2

similar when AV is small.
NTK assumes they are the same.

Change of the output after training:

p neurons
_ _ top layer
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]
Problem setup (Cont’d)
» After training, the change of the output can be approximated by a linear model

top layer change of bottom
D weights layer weights

j:l act|vat|on pattern
of initial state
T T
Py I
Rewrite it as fav.v,(x) :::hvojm: :AV:;

|
e o o o | [

feature vecty

The feature vector is very different from i.i.d. Gaussian or Fourier features.

design matrix formed by n samples: H € R (dp)

Min-l3-norm solution:  AV*2 .= arg min ||v||2, subject to Hv =y

v
AVEQ _ HT(HHT)—ly Ground-truth data model

o y:f(w)—FE,CCERd
Trained model: feg(:c) = hVO,mAVEQ.
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Main Results

min-I, with simple features

Test error

[

Model complexity (p)

Considering the following class of ground-truth functions:

_ {fg(a:) _ f——\\mTzﬂ _a’rccos( 2 (= )du( )}

Sd—1) b

(+) is the uniform distribution on the unit sphere 41
g () is any function whose norm is bounded

We provide an upper bound on the test error for finite p (num of neurons)

. 1 1
1f2(x) — f(x)| =0 (ﬁ) + poly, (n,d) - O (v@) + poly,(n, d) - noise level
num of training data num of neurons

When n is larger and noise level is low, the test error decreases to a very small value as p increases

null risk (the error of a model
min-I, with NTK that always predicts zero)
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num of training data num of neurons noise level

A

Pr 172(@) = f@)] 210758 4 (1 /Tl dn Y 2075) 4/ (v, dyel for all € € R™ )

.
''''''

§2€2(6Xp(— % )+exp( \‘715 )+€Xp( \q/]_f' ))+ 4 q = 1 can be any large number,

8”9”%0 _8”9”% _8Tl||g||% n\q/ﬁ Jm(n,d) is a function of n and d.

The first result in the literature showing a descent curve as a function of p for the
NTK model

Also the first result characterizing the speed of descent

Prior results in the literature [e.g., Arora et al.,2019] only show an upper bound only
for p above a threshold, and thus are independent on p

For comparison [Arora et al.,2019]:

00\ — 1 —
Pr{ Elf(a) - (@) < NEUESEE +o(\/ R

n

The descent of NTK is very different from that of linear models with simple features

[Belkin et al.,2019]:
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increase as p (num of feature) increases
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Ground-Truth Functions: Learnable or Not

A

\ not-learnable ground-truth function
- lower bound

Test error

learnable ground-truth function

> Model complexity (p)

* The descent of the NTK model critically depends on the ground-
truth function.

* For the specific NTK model in our work (ReLU without bias), we
provide a lower bound on the generalization error for not-learnable
functions

If the ground-truth function f ¢ F% (or equivalently, D(f, F%2) > 0), then the
MSE of f2 (with respect to the ground-truth function f) is at least D(f, F*2).
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Simulation result

(a) learnable ground-truth
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f@e) = (sin(k@) + cos(k6))

k€{0,1,2,4}

Learnable ground-truth function:
corresponds to linear and even
power polynomials

f(6) = (sin(k8) + cos(k6))
k€{3,5,7,9}

Not-learnable ground-truth function:
corresponds to odd polynomials
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What exactly are the functionsin F¢27?

T

st {fg (@) = /SdlmTzﬂ—afC;;S(w z)g(z)du(z)}

Rewrite [, € F*2 as a convolution

fy(@) = g ® h(z) = /S NCOUCaT

+ 7 — arccos(z! e)

h(xz):=x" e o=

h as a “filter” or “channel”

We prove that:

cn(l,0) is zero for [ = 3,5,7,--- and is non-zero for [ =0,1,2,4,6,---.

linear and even-power polynomials (e.g., f(x) = (a” x)*) are learnable (consistent with
[Arora et al.,2019]), while other odd-power polynomials (e.g., f(x) = (a’x)3) are not.
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Caution: the set of learnable functions
depends on the model structure

« [Satpathi & Srikant, 2021] shows that if bias is considered in
RelLU, then both even-power and odd-power
polynomials are learnable.

ReLU without bias: max (0, x)
ReLU with bias:  max(bias, x)

e Although our setting does not include bias in ReLU, we
can easily derive similar conclusions when bias in ReLU
is considered.

* Adding a bias is equivalent to fixing the last element of
input x by a constant.

* Even though only a subset of functions are learnable in
the d-dim space, when projected into a (d-1)-dim
subspace, they may already span all functions.
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Conclusion

* We give an upper bound of the generalization error of min-
[,-norm overfitting solutions for 2-layer NTK, which is the
first known result to characterize the descent curve as a
function of p for the NTK model.

* We show that the descent behavior of NTK is different from
that of linear models with simple features (such as Gaussian
and Fourier features).

* We show that the descent behavior critically depends on
the ground-truth functions and the model structure.



