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What is Meta-Learning ?

1. requires a large number of  samples. 

2. needs a long training process. 

1. Kids who have seen trees and flowers only a few times quickly tell them apart.

2. People who know how to ride bike learn motorcycle fast with little demonstration. 

3. People quickly judge fruit quality based on previous purchase experiences. 

• Question: 

Is it possible to have such a learning paradigm which learns new concepts fast 

with only a few data samples?  

• A conventional machine learning model often 

• Humans, however, learn new concepts much faster.
Image source: Yu & Finn, blog, 2018



Meta-Learning (Learning to Learn)

1. Extract prior information or similarity of  observed learning tasks

2. Use such information for learning a new task (adaptation) with a few samples 

➢ Fast training with better prediction accuracy

meta-learning

pretrained

Supervised classification Reinforcement learning

Epoch Epoch

• It works? (Finn et al, 2017)

• Goal of  meta-learning:

meta-learning

pretrained



Applications of  Meta-Learning:

• Supervised few-shot classification

A classifier trained on cat-bird, flower-bike images (training tasks) can quickly classify a 

given dog or otter image after seeing a small number of  dog-otter pictures (test period).



Applications of  Meta-Learning:

• Reinforcement learning

Image source: Louis Kirsch et al., 2020

An agent trained on flat surface environment can quickly finish task 

on a different environment, e.g., uphill surface, during the test.



Meta-Learning Approaches:

• Metric-learning based approach

➢ Prototypical networks

➢ Matching networks

➢ Memory-augmented neural networks

➢ Meta networks

➢ Model-agnostic meta-learning (MAML)

➢ Almost no inner loop (ANIL)

➢ Bilevel meta-learning 

✓ Simpler

✓ Efficient

✓ Effective

• Model-based approach

• Optimization-based approach

Image source: Snell et al., 2017

Image source: Santoro  et al., 2016



As most essential framework:

➢ Inspire numerous follow-up variants

A pioneering optimization-based method.

➢ Recommendation

➢ Computer vision

➢ Meta-reinforcement learning

➢ Data mining

➢ Personalized federate learning

➢ …………

Model-Agnostic Meta-Learning (MAML)

(Finn et al, 2017)

Generalizability: applicable to any model trained with gradients 

Reinforcement learning, Google AI



How MAML Works

Inner loop: task-specific adaptation Outer loop: meta objective

• Loss averaged over all tasks:

Same initial 𝑤:

• Each task 𝑖:

• 𝑤𝑁
𝑖 depends on 𝑤

where 𝑝𝑇 is task distribution

Image sources: Finn et al, 2017
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✓ Based on observed tasks,  find good initial w;

✓ For a new task, starting from w, a small

number of  gradient steps find good parameter.



MAML Algorithm

Data sampling required!

Inner loop: task-specific adaptation Outer loop: model updates

• Meta-gradient estimate:

• Model update with sampled tasks

➢ RL example: REINFORCE (Williams, 1992) 

• Each task 𝑖:

➢ 𝑇𝑖 , 𝐷𝑗
𝑖 : samples at outer loop



Convergence for MAML

➢ If  inner stepsize , 

(Guarantee to stationary point:)

Theorem

➢ To achieve 𝜖-accurate stationary point, it requires

Gradient computations: 

Hessian-vector computations: 

(Ji, Yang, Liang, JMLR 2021)

• Inner stepsize should not be too large

• Error reduces when increasing batch sizes
Empirically verified in Antonio et al., 2019

N: # of inner-loop steps; K: # of out-loop steps;  S: Inner-loop batch size;
B: outer-loop task batch size; T: outer-loop sample batch size



Almost No Inner Loop (ANIL)
(Raghu et al., 2019) A simple and efficient variant of  MAML

Interesting findings in Raghu et al., 2019: 

❑ During inner-loop adaptation, several layers of  MAML model nearly do not change

This motivates ANIL as an efficient simplification of  MAML by

❑ Adapting or updating only partial parameters (e.g., head of  NN) in inner loop  

Image source: Raghu et al., 2020



ANIL Training 

Each task 𝑖’s parameters split into 

• Each task 𝑖:

Task adaptation on partial parameters 𝑢𝑖

• Same initial 𝑢:

Meta optimization:

Loss averaged over all tasks:

MAML: adapt all parameters 𝑤𝑖

MAML:

❑ 𝜙: common parameters shared by all tasks



Importance of  ANIL

• Converge much faster than MAML (Ji, Lee, Liang, Poor NeurIPS 2020):

Backbone: 4-layer CNN 



Loss Geometries of  ANIL Training

Geometries of  inner-loop loss 𝑙𝑆𝑖(𝑢, 𝜙): 

❑ Strongly-convex w.r.t. 𝑢

➢ 𝑢 : head (last layer) of  neural networks (e.g., last row of  table)

➢ 𝑢 : more than one layers (e.g., first 4 rows of  table)

Different geometries lead to different convergence behaviors

❑Nonconvex w.r.t. 𝑢



Strongly-Convex ANIL

Convergence rate: 

Theorem

Computational complexity : 

(Ji. et al., NeurIPS 2020)

As 𝑁 increaes: ➢ Convergence rate first increases, then saturates

Training guideline: choose a moderate but not too large 𝑁

(𝑁 is number of  inner-loop steps)

➢ Complexity first decreases, then increases 



Experimental Verification

As 𝑁 increaes:

➢ Rate w.r.t. iterations (left plot) first increases, then saturates

• Few-shot meta-learning on FC100 and miniImageNet:

➢ Rate w.r.t. running time (right plot) first increases, then decreases



Nonconvex ANIL

Convergence rate: 

Theorem

Computational complexity : 

(Ji. et al., NeurIPS 2020)

As 𝑁 increases: (opposite to strongly-convex ANIL)

Convergence rate and complexity both become worse 



Experimental Verification

➢ Rate w.r.t. iterations & running time become worse when 𝑁 increases

Training guideline: choose a small 𝑁

• Few-shot meta-learning:



Bilevel Meta-Learning with Shared Embedding 

• 𝜙: parameters of  feature embedding model 

For each task 𝑖:

❑ No common initial 𝑢 to train

❑ Only updates embedding model parameters 𝜙

In contrast to MAML and ANIL:

• Challenges of  bilevel methods: hypergradient computation

Two efficient approximations: 

❑ 1. approximated implicit differentiation (AID). 2. iterative differentiation (ITD)  

• Generic bilevel optimization:



Evolution Strategies (ES) for Bilevel Optimization

• Our ES-based Jacobian (ESJ) estimator of  

• Why compute second-order information



ESJ: Bilevel Optimizer with ES-based Jacobians

❑ No second-order information involved (Hessian-free)

❑ A stochastic version also provided for large datasets

• Features

❑ With convergence guarantee:

• Scalability to deep models (ResNet-12, 12 millions parameters)



Conclusion & Takeaways

➢ Convergence & complexity analysis for MAML framework 

➢ A general tool for analyzing other meta-learning algorithms

❑ Convergence Theory for General Multi-Step MAML

➢ Theoretical guideline on parameter selection

➢ Characterization of  impact of  loss geometries on convergence behaviors

❑ Convergence Theory  for ANIL

➢ Faster and scalable bilevel optimizers with higher efficiency & improved 

performance guarantee

❑ Bilevel Optimization for Meta-Learning



Future Directions

❑ Scalable and efficient meta-learning

➢ Accelerate Hessian-free meta-learning algorithms

❑Meta-learning for other areas

➢ Design better “learning to optimization” (L2O) algorithms

➢ Meta-learning application in offline reinforcement learning

➢ Design fast hyperparameter optimization algorithms

❑ Distributed meta-learning for edge networks
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