
Deep Learning for Computer Vision

TDAI Deep Learning Summer School, 2022

June 2nd, 2022

Wei-Lun (Harry) Chao



Outline

• (Brief and narrow) introduction to computer vision

• Basic deep learning blocks for computer vision
oConvolutional neural nets

oVisual transformers

• Applications:
o2D Recognition

o3D Perception for autonomous driving

o2D Generation

• Practical problems:
o Insufficient (labeled) data

oDomain shifts
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Recap: 
Machine learning and deep learning



Machine learning recap

Algorithm, model Training dataEvaluation, loss

Learning from Data
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Example: coin classifier

Machine 
learning 

algorithms 
Training data Learned models 

& patterns
Test data

[Figure credit: Y. Abu-Mostafa, M. Magdon-Ismail, H-T Lin. Learning from data.] 5



Deep learning recap

Classifier

A sequence of “learnable” computation!

Label: 1, 5, 10, 25, …
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[Gif credits: Gradient descent 3Blue1Brown series  S3 E2]

Example: image classification

A sequence of “learnable” computation!
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Computer vision

[Source: Detectron2]

• When the data are about 
images, videos, or signals 
captured by 3D sensors …

[Source: Graham Murdoch/Popular Science]
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Computer vision: data

Image (s)

Video (s) = sequence of images 

RGB image (s): Three matrices
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Computer vision: data

• RGB images:

• What is inside each matrix?
o {0,1,……,255}

o Interval: [0, 1] 
0 0 124 255 125

0 0 125 126 60

0 0 126 60 126

0 0 0 127 60

0 0 0 0 128

0 0 124 255 125

0 0 125 126 60

0 0 126 60 126

0 0 0 127 60

0 0 0 0 128

0 0 124 255 125

0 0 125 126 60

0 0 126 60 126

0 0 0 127 60

0 0 0 0 128
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Computer vision: data

Image (s)

Video (s) = sequence of images 

RGBD image (s): Four matrices

Entry value
= depth

12



Computer vision: data

Point cloud

A collection of 3D (or 4D) points 

x coordinate

y coordinate 

z coordinate

reflectance

N points = 3-by-N or 4-by-N matrix
(should not be processed by 
convolutional neural nets directly!)
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Computer vision: data

Image aligned with point cloud
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Questions?



Computer vision: representative tasks
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Computer vision: representative tasks

Retrieval, image-to-image search
17



Computer vision: representative tasks

18
Depth estimation and 3D reconstruction



Computer vision: representative tasks
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Computer vision: representative tasks

20

Style transfer

[Figure credit: CycleGAN, ICCV 2017]



Computer vision: representative tasks

21

Vision & language; e.g., visual question answering
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Object-centric vs. scene-centric images

Object-centric images:
• contain a single class of objects
• The object size is usually large
• The background is simple 

Scene-centric images:
• contain multiple classes of objects
• The object sizes can vary
• The background is challenging
• Objects may be occluded

23



Classification on object-centric images

• Single object class (not multi-label cases)

• Properties to capture:

➢Translation invariant

➢Scale invariant

car elephant
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The progress of deep learning for classification

25

ImageNet-1K (ILSVRC)
• 1,000 object classes
• 1,000 training images/class
• Each image contains just one 

class of object! 

Metric: Top-k accuracy
• For each image, return a list of 

top-k possible classes
• If the true class is within the list, 

the classification is correct



The progress of deep learning for classification

[Simonyan et al., 2015]

[Szegedy et al., 2015] [Huang et al., 2017][He et al., 2016][Krizhevsky et al., 2012]

Top-5 error rate



General formulation for all these variants

Prediction = argmax
𝑐

𝒘𝑐
𝑇 𝑓𝜽 𝒙

Image (pixels)

𝒙 𝑓𝜽 𝒙

𝒘1
𝑇 𝑓𝜽 𝒙

𝒘2
𝑇 𝑓𝜽 𝒙

27



Convolution

A special computation between layers

• A current node is not directly affected by “all nodes in the previous layer”

• The network “weights” on the edges can be “re-used”
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Convolution

0 0 0 0 1

0 0 0 1 1

0 0 1 1 1

0 1 1 1 1

1 1 1 1 1

0 0 1

0 1 1

1 1 1

Feature map (nodes) at layer t Feature map at layer t+1

“Filter” weights
(3-by-3)

Inner product
Element-wise multiplication and sum

1
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Convolution

0 0 0 0 1

0 0 0 1 1

0 0 1 1 1

0 1 1 1 1

1 1 1 1 1

0 0 1

0 1 1

1 1 1

“Filter” weights
(3-by-3)

Inner product

6

Feature map (nodes) at layer t Feature map at layer t+1
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Convolution

0 0 0 0 1

0 0 0 1 1

0 0 1 1 1

0 1 1 1 1

1 1 1 1 1

0 0 1

0 1 1

1 1 1

“Filter” weights
(3-by-3)

Inner product

1Zero-padding: 
Set the missing 
values to be 0Feature map (nodes) at layer t Feature map at layer t+1
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“Filter” weights
(3-by-3)

“Filter” weights
(3-by-3-by-“2”)

Convolution

0 0 0 0 1

0 0 0 1 1

0 0 1 1 1

0 1 1 1 1

1 1 1 1 1

0 0 1

0 1 1

1 1 1

Inner product

Feature map (nodes) at layer t Feature map at layer t+1
32



“Filter” weights
(3-by-3-by-“2”)

Convolution

0 0 0 0 1

0 0 0 1 1

0 0 1 1 1

0 1 1 1 1

1 1 1 1 1

0 0 1

0 1 1

1 1 1

Inner product

1 1 1

0 0 0

1 1 1
Feature map (nodes) at layer t Feature map at layer t+1

One filter for one output “channel” 
to capture a different “pattern” 
(e.g., edges, circles, eyes, etc.)
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Convolution: properties

• Process nearby pixels together

• Translation invariant: “local patterns” can show up at different pixel locations

• Can process arbitrary-size images

Top-left, Top right: has ears
Middle: has eyes

34



Convolutional neural networks (CNN)

Shared weights

Vectorization + FC layers

Max pooling + down-sampling 

• Remove redundancy
• Translation-invariant
• Enlarge receptive filed

35



Receptive field

Linear receptive field Exponential receptive field
(with pooling + down-sampling)
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Layers of feature maps (representations)

What does a large response at each layer/channel mean?
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Representative CNN networks

• AlexNet
[Krizhevsky et al., 2012]

• VGGnet
[Simonyan et al., 2015]

• A block: computation
• Edge: nodes/tensors

38



Representative CNN networks

• ResNet
[He et al, 2016]

• DenseNet 
[Huang et al, 2017]

𝒛 𝑡

• A block: computation
• Edge: nodes/tensors

𝒛 𝑡−2

𝒛 𝑡 = 𝒛 𝑡−2 + conv 𝒛 𝑡−2

Advantages: 
• Optimization
• Collect more information

39



Representative CNN networks

A general architecture involves

• Multiple layers of convolutions + ReLU (nonlinearity) + pooling + striding

• These result in a (final) feature map
oPositions on the map correspond to the image

• The map goes through FC layers (MLP)

• Usually, we keep the network till the feature map
o For feature extraction

o For down-stream tasks

o For image-to-image search

40



Training a CNN for classification

• Model: argmax
𝑐

𝒘𝑐
𝑇 𝑓𝜽 𝒙

oWhat to learn: weights of convolution filters 𝜽, and 𝒘𝑐

• Training data: 𝒙𝑛, 𝑦𝑛 𝑛=1
𝑁

• Objective/loss function: ℓ(𝒙, 𝑦; 𝜽, 𝒘𝑐 )
o For example, 𝟏 argmax

𝑐
𝒘𝑐
𝑇 𝑓𝜽 𝒙 ≠ 𝑦 , softmax

41

100: elephant

min

𝑛=1

𝑁

ℓ(𝒙𝑛, 𝑦𝑛; 𝜽, 𝒘𝑐 )

Minimize the empirical risk



The diversity of deep learning models

Visual transformers

[Liu et al., 2021][Battaglia et al., 2018]

Graph neural networks

[Qi et al., 2017]

PointNet

[Zoph et al., 2017]

Neural architecture search

42



The diversity of deep learning algorithms

Meta-learning

[Finn et al., 2017]

Adversarial learning

[Ganin et al., 2016]

[He et al., 2020]

Contrastive learning

43
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Visual transformer

• A newly emerging way to generate the (final) feature map 𝑓𝜽 𝒙
o Inspired by the transformer blocks in NLP 

45

Prediction = argmax
𝑐

𝒘𝑐
𝑇 𝑓𝜽 𝒙

Image (pixels)

𝒙 𝑓𝜽 𝒙



CNN vs. Visual transformer

46

CNN

Convolution

Visual transformer

Transformer



Visual transformer

47

(2) Vectorize each of them 
+ encode each with a shared MLP 
+ “spatial” encoding

𝒛1
0

𝒛2
0

𝒛9
0⋯

(1) Split an image into patches

𝒛1
1

𝒛2
1

𝒛9
1⋯

1-layer of Transformer Encoder

[Dosovitskiy et al., An Image is Worth 
16x16 Words: Transformers for Image 
Recognition at Scale, ICLR 2021]



1-layer of transformer encoder

48

K Q V

key,    query,    value
“learnable” matrices

𝒛1
0

𝒛5
0

𝒛9
0

⋯⋯

𝒌1
0
𝒒1

0
𝒗1

0 𝒌5
0
𝒒5

0
𝒗5

0
𝒌9

0
𝒒9

0
𝒗9

0

⋯⋯

Relatedness of patch-5 
to others (after softmax)

⨂

𝑎5,5
0

𝑎5,1
0

𝑎5,9
0

⨂⨂

⨂

𝒗5,5
0

𝒗5,1
0

𝒗5,9
0

⨂⨂

Weighted value vectors

𝒛1
0

𝒛5
0

𝒛9
0

⋯⋯

⨁
𝒔5
0

𝒛1
1

𝒛5
1

𝒛9
1

⋯⋯

Single-head case



CNN vs. Visual transformer

49

CNN

Convolutions

Visual transformer

Transformer

• Enable large receptive filed and long-distance relationship

• Enable different local relationships (based on 𝒌𝑖
0
⨂𝒒𝑗

0
)



Swin transformer

50

• Consider smaller patches and local “transformer”
• Produce feature maps of different resolutions, like CNNs

[Liu et al., Swin Transformer: 
Hierarchical Vision Transformer using 
Shifted Windows, ICCV 2021]



ImageNet classification accuracy

51

[Liu et al., 2021]



Short summary

A general architecture of CNN or visual transformers involves

• Multiple layers of computations + nonlinearity + (pooling + striding)

• These result in a (final) feature map

• The map goes through FC layers (MLP)

• Usually, we keep the network till the feature map

52
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• “Same” input: images

• “Different” outputs:

a) A C-dim class probability vector  

b) A set of bounding boxes, each with box location and class probability

c) An W x H x C feature map

d) A combination of b) and c)

• “Different” labeled training data

Representative 2D recognition tasks

Dog
Cat
Horse
Sheep 

W

H

54

a) c)

b) d)



Object- vs. scene centric images

MSCOCO [scene-centric]:
• Instance-level label 
• 82 classes (~0.3M images)

ImageNet [object-centric]:
• Image-level class label
• 1K classes (~1M images)
• 21K classes (~14M images) 55



Object- vs. scene centric images

• Object-centric images usually contain a single class of objects.

• Object frequency and semantic cues in different kinds of images can be different!
56



Semantic segmentation



Semantic segmentation

• Every “pixel” to have a class label

• Properties:

➢High-resolution output

➢Context

➢Localization

➢Multi-scale

58



New architecture?

Single spatial output!

59



Fully-convolutional network (FCN)

CNN

Feature map

Vector after vectorization

Dog
Cat
Boat
Bird

Matrix multiplication, inner product

60



Fully-convolutional network (FCN)

CNN

Dog
Cat
Boat
Bird

Each row = a Conv filter

Feature map

61



Fully-convolutional network (FCN)

[Long et al., Fully Convolutional Networks for Semantic Segmentation, CVPR 2015] 62



Up-sampling

Interpolation Deconvolution

63



Fully-convolutional network (FCN)

Help 
localization

Help 
context + semantics

64[Long et al., Fully Convolutional Networks for Semantic Segmentation, CVPR 2015]



U-Net

Help 
localization

Help 
context + semantics

65

[Ronneberger et al., U-Net: 
Convolutional Networks for 
Biomedical Image 
Segmentation, MICCAI 2015]



U-Net (aka, Hourglass network)

66



CRF to improve localization

• DeepLab

CRF: similar and 
nearby pixels 
have the same 
class label

[Chen et al., DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, 
Atrous Convolution, and Fully Connected CRFs, PAMI 2017] 67



Atrous Spatial Pyramid Pooling (ASPP)
for multi-scale features

68



Example results

69

[Nirkin et al., HyperSeg, 2021] Ground truth
[Zhao et al., Pyramid scene 
parsing network, 2017]



Object detection + instance segmentation



Object detection

• Properties:

➢Labels + bounding boxes

➢Localization

➢Multi-scale

➢Context

➢“Undetermined” numbers

[class, u-center, v-center, width, height]

71



Naïve way

• Sliding window

➢Time consuming

➢What size?

ResNet classifier
72



R-CNN

• Objectness proposal

• CNN classifier

• Box refinement

[Girshick et al., Rich feature hierarchies 
for accurate object detection and 
semantic segmentation, CVPR 2014]
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Selective search for proposal generation

• Step 1:
oNot deep learning 

o super-pixel-based segmentation

• Step 2:
oRecursively combine similar 

regions into larger ones

• Step 3:
oBoxes fitting   

[Stanford CS 231b] 74



R-CNN[Girshick et al., Rich feature hierarchies 
for accurate object detection and 
semantic segmentation, CVPR 2014] [Girshick, CVPR 2019 tutorial]
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R-CNN

• Box regression:

➢(du, dv)

➢(dw, dh)

By offset = MLP(feature)

Proposal

Ground truth

76



R-CNN

• Problems:

➢Slow: every proposal needs to go through a “full” CNN

➢Mis-detection: the proposal algorithm is not trained together

77



Fast R-CNN

ROI pooling

[Girshick, CVPR 2019 tutorial][Girshick, Fast R-CNN, ICCV 2015]
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ROI pooling vs. ROI align

ROI AlignROI Pooling

Making features extracted from different proposals the same size!

79



Faster R-CNN

ROI pooling

[Girshick, CVPR 2019 tutorial]

[Ren et al., Faster r-cnn: Towards real-
time object detection with region 
proposal networks, NIPS 2015]
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How to develop RPN
(region proposal network)? 

5 * 8 * K * (2 + 4)

[Ren et al., 2015]

81

Ground truth

Anchor



What do we learn from RPN?

• “How to encode your labeled data so that your CNN can learn from them”
is important!

• Inference: predict these “values” and accordingly transfer them to 
bounding boxes!

82



Questions?



How to deal with object sizes?

[Lin et al., Feature Pyramid 
Networks for Object 
Detection, CVPR 2017]
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Mask R-CNN
[Girshick, CVPR 2019 tutorial][He et al., Mask r-cnn, ICCV 2017]
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Mask R-CNN: for instance segmentation

CNN: convolutional neural network
RPN: region proposal network

Bulldozer: 80%
Bus: 15%
Motorcycle: 5% 

86



2-stage vs. 1-stage detectors

• Other names: single-shot, single-pass, … (e.g., YOLO, SSD)

• Difference: no ROI pooling/align 

[Redmon et al., 2016]

2-stage detector 1-stage detector

87



Exemplar 1-stage detectors

[Liu et al., 2016]

SSD

YOLO

[Redmon et al., 2016] 88



Exemplar 1-stage detectors (Retina Net)

[Lin et al., 2017]

89



2-stage vs. 1-stage detectors

[Redmon et al., 2016]

• Pros for 1-stage:
o Faster!

• Cons for 1-stage: 
o Too many negative locations; scale

90



Inference: choose few from many

• Non-Maximum Suppression (NMS)

[Pictures from “towards data science” post] 91



Example results

92

[Zhang, et al., 2021]
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Action & decision



LiDAR Radar Sonar Camera

Perception Prediction & Inference Action & decision

Others



2D object detection 2D instance segmentation

LiDAR points: 3D coordinates

Long-standing
computer 

vision tasks

[Source: BDD100K 
dataset, CVPR 2016]
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LiDAR points: 3D coordinates

3D object detection 3D instance segmentation

Identify objects’ 3D locations in (x, y, z), not 2D locations in image pixels!

How “far” are the 
detected objects?

97



LiDAR-based 3D perception



LiDAR-based 3D perception

[Source: Graham Murdoch/Popular Science]

LiDAR:

➢ Light Detection and 

Ranging sensor

➢ accurate 3D point clouds 
of the environment

99



LiDAR-based 3D perception

You can view the LiDAR point clouds from different angles

100

Frontal view Bird’s-eye view (BEV)



Two major ways to process LiDAR point clouds 

• Point-wise processing
oPointNet [Qi et al., 2017]

oPointNet++ [Qi et al., 2017]

oPointRCNN [Shi et al., 2019]

o…

• Voxel-based processing: turn points into a tensor (e.g., W x D x H x F)
oPointPillars [Lang et al., 2019]

oVoxelNet [Zhou et al., 2017]

oPIXOR [Liang et al., 2018]

o…

101



Voxel-based processing + 3D object detectors

• Occupation (PIXOR): 3D points as a 3D occupation tensor from bird’s-eye-view

[Yang et al., PIXOR: Real-time 3D Object Detection from Point Clouds, 2019]

height

depth

Left-right
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Voxel-based processing + 3D object detectors

• VoxelNet (4D tensors with voxel grid feature: W x D x H x F)

[Zhou et al., VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection, 2017]

More complicated 
4D tensors with 
voxel grid feature: 
W x D x H x F

103



Voxel-based processing + 3D object detectors

• PointPillars (3D tensors with voxel grid feature: W x D x (H x F))

[Lang et al., PointPillars: Fast Encoders for Object Detection from Point Clouds, 2019] 104



Questions?



Point-wise processing

• PointNet

[Qi et al., PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, 2017]

A neural net to final canonical shape

From n x 3   to   n x 1024From n x 3   to   n x 1088

106



Point-wise processing

• PointNet++ (incorporate local information)

[Qi et al., PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space, 2017]

From N x 3   to   N x high-dim

107



Point-wise 3D object detectors

[Qi et al., Frustum PointNets for 3D Object Detection from RGB-D Data, 2018] 108



Point-wise 3D object detectors

[Shi et al., PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud, 2019] 109



Example results

110
[Chen et al., CVPR 2017]



Image-based 3D perception



Affordability and reliability

LiDAR is expensive (> $10K)
Over-reliance on LiDAR is risky

Images provide no depth

112



Stereo depth estimation

=

Il Ir

D

Z

disparity

depth

Focal length    Baseline
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Disparity Map

Stereo depth estimation

Left

Right

disparity
Depth Map
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Stereo depth estimation

Left

Right

P
ro

b
ab

ili
ty

Disparity
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Stereo depth estimation

Left

Right

Neural
Net 

Prob. P
ro

b
ab

ili
ty

Disparity
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Pyramid stereo matching network (PSMNet)

117[Chang et al., Pyramid stereo matching network, 2018] 



Continuous Disparity Network

118

Left

Right

Neural
Net 

Prob.

Offset

P
ro

b
ab

ili
ty

Disparity

Output disparity
= shifted mode

[Garg et al., Wasserstein Distances for Stereo Disparity Estimation, 2020]
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Without Offset With Offset

Output disparity
= mode

P
ro

b
ab

ili
ty

Disparity

Output disparity
= shifted mode

P
ro

b
ab

ili
ty

Disparity
00



LiDAR vs. camera-based depth

120



Camera-based depth estimation

121



Pseudo-LiDAR representation

122



• Pseudo-LiDAR representation: gluing depth estimation + LiDAR-based detection

• SOTA camera-based depth estimators and LiDAR-based object detectors can 
seamlessly be incorporated!

Yan Wang, Wei-Lun Chao, Divyansh Garg, Bharath Hariharan, Mark Campbell, and Kilian Q. Weinberger, 
"Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving," 

CVPR, 2019

Depth estimation models

• DORN (CVPR18)

• MC-CNN (JMLR 16)

• GC-Net (ICCV 17)

• PSMNet (CVPR18)

• ……

3D object detection models
• PIXOR (CVPR 18)
• F-PointNet (CVPR 18)
• AVOD (IROS 18)
• PointRCNN (CVPR 19)
• ……

Pseudo-LiDAR framework



Data representation is important!

• LiDAR-based: 3D point clouds

• Camera-based: 2D depth maps

o Processing depth as an image leads to large distortion!

[Source: Mask R-CNN, ICCV 2017]

[Source: VoxelNet, CVPR 2018]

124



Example results

125

LiDAR pseudo-LiDAR Depth-map
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Generative models

128



Generative models

image manifold: 𝑝 𝒙

𝑔: 𝑍 ↦ 𝑋

image

𝑧~𝒩(0, 𝐈)

Easily samplable distribution 

[Credits: Tutorial on Diffusion Models]



What and how to learn?

130

Real image: 𝒙~𝑞(𝒙) Generative model: 𝒙′~𝑝𝜽 𝒙′

𝒛~𝒩(0, 𝐈)
𝒙′~𝑝𝜽 𝒙′ 𝒛 or 𝒙′ = 𝑔𝜽 𝒛

Objective 1
• 𝑝𝜽 can explain real images 𝒙~𝑞(𝒙)
• Maximize 𝑝𝜽 𝒙 , where 𝒙~𝑞(𝒙)
• Example: variational auto-encoder (VAE)

Objective 2
• 𝒙~𝑞(𝒙) and 𝒙′~𝑝𝜽 𝒙′ are indistinguishable
• Example: generative adversarial net (GAN)



Generative adversarial net (GAN)

131

Generator

Discriminator

REAL

FAKE

[Credits: Mengdi Fan and Xinyu Zhou, CSE 5539 course presentation]

Real image: 𝒙

Fake image: 𝒙′ = 𝐺(𝒛)

Iterate between:
• Update D to distinguish between 𝒙~𝑞(𝒙)and 𝒙′ = 𝐺 𝒛 , 𝒛~𝒩(0, 𝐈)
• Update G such that D cannot distinguish between 𝒙~𝑞(𝒙)and 𝒙′ = 𝐺 𝒛 , 𝒛~𝒩(0, 𝐈)



Example results (by Style-GAN)

132[A Style-Based Generator Architecture for Generative Adversarial Networks, CVPR 2019]



Other generative models

• Denoising Diffusion Probabilistic Models (PPDM)
o Learn to inverse the diffusion process

oCan generate very high-quality images

133

Diffusion by simple Gaussian

Denoising by neural networks (each step by a U-net!)

[Denoising Diffusion Probabilistic Models, NeurIPS 2020]



Other generative models

• Denoising Diffusion Probabilistic Models (PPDM)

134[Denoising Diffusion Probabilistic Models, NeurIPS 2020]



Other generative models

135

Big-GAN Diffusion models Real

[Diffusion Models Beat GANs on Image Synthesis, NeurIPS 2021]



Conditional image generation

Replace 𝑧~𝒩(0, 𝐈) by

• Real image: image translation from domain A to domain B

• Can learn with “unpaired” data or “paired” data

136
[Zhu et al., 2017] [Wang et al., 2018]



Conditional image generation

Replace 𝑧~𝒩(0, 𝐈) by

• Text: text-conditioned 
image generation

• Usually need to learn 
with “paired” data

137[Hierarchical Text-Conditional Image Generation with CLIP Latents, arXiv 2022]



Outline

• (Brief and narrow) introduction to computer vision

• Basic deep learning blocks for computer vision
oConvolutional neural nets

oVisual transformers

• Applications:
o2D Recognition

o3D Perception for autonomous driving

o2D Generation

• Practical problems:
o Insufficient (labeled) data

oDomain shifts

138



“Some” challenges in DL for CV

• Deep neural networks are “labeled” data hungry

• Mismatch between training and test data

139



Challenge-1: Insufficient (labeled) data

• Example: ImageNet-1K (ILSVRC)
o1,000 object classes

o1,000 training images per class

140



It’s hard to collect labeled data

• Collecting and annotating data is time-consuming and expensive

• Crowdsourcing can be noisy and may not be feasible for certain problems
oe.g., medical images and applications

• For some applications, even “unlabeled” data can be hard to collect 
o e.g., fine-grained classes, long-tailed problems, data privacy and protection

141



Fine-grained classes

[Credits: Rogerio Feris, ICCV-2019 slides]



Long-tailed distribution

Objects in SUN datasets
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Collecting dense labels is even harder 

• Images with detailed instance segmentation labels

• MSCOCO: ~100 classes from 328K images

• Complex tasks, however, have fewer labeled data …

[He et al, 2017]
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Long-tailed distribution on densely-labeled data

Visual Genome

LVIS
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Self-supervised learning



Can we learn a neural network from unlabeled data?

• What to learn?

• How to learn?



Traditional paradigms

• Unsupervised learning
oDiscover the structure (e.g., clusters, groups, or classes) of the data instances

o Estimate the distribution/density p(x) of the data instances

oGenerative models

• Assumption: “similar” data should be grouped together



Deep self-supervised learning paradigms

• One more purpose:
oUnsupervised feature or neural network learning

Neural net
Encoder

Image-to-image search

Initialize “downstream” 
tasks like for long-tailed, 
few-shot classification 



Deep self-supervised learning paradigms

• Generative:
oAE (auto-encoder), VAE

oMasked or auto-regressive training

o…



Deep self-supervised learning paradigms

• Discriminative:
oContrastive learning

o Similarity learning

oClustering based learning

o…

Encoder

[Chen et al., 2020] [Caron et al., 2018][Khosla et al., 2020]

[Noroozi et al., 2016]



152
[Google AI blog, Advancing Self-Supervised and Semi-Supervised Learning with SimCLR]

Contrastive learning



Data augmentation

153
[Chen et al., A Simple Framework for Contrastive Learning of Visual Representations, ICML 2020]



Results

154[Jaiswal et al., A Survey on Contrastive Self-supervised Learning, 2021]

Linear evaluation:
• Freeze the feature extractor
• Only learn the last FC layer 

(i.e., linear classifier)



Unsupervised 3D object detection



Can we learn a 3D object detector from unlabeled data?

• We focus on MOBLE traffic participants (e.g., cars, pedestrians, cyclists, etc.)
oHow can we discover mobile objects from unlabeled LiDAR data?

• Simple heuristics:

oMobile objects are unlikely to stay persistent at the same location over time.

oWe can easily collect multiple traversal data of repeated routes (many of us 
drive through the same routes every day). 

3D object detection 3D instance segmentation



157

[Diaz-Ruiz et al., Ithaca365: Dataset and Driving Perception under Repeated and Challenging Weather Conditions, CVPR 2022]



𝑡 = 2𝑡 = 1 𝑡 = 3 𝑡 = 4

Point clouds from past traversals

Learning to Detect Mobile Objects Without Labels

𝑞 𝑞 𝑞 𝑞

𝑞
𝑟

𝑁1(𝒒)
𝑁2(𝒒)

𝑁3(𝒒) 𝑁4(𝒒)

𝜏(𝒒)
Count 

Normalize

Persistency Score

Current point cloud

Entropy of the histogram quantifies the persistency!

𝑞

[You et al., Learning to Detect Mobile Objects from LiDAR Scans Without Labels, CVPR 2022]



Learning to Detect Mobile Objects Without Labels

• Weak labels through simple heuristics:
oClustering low persistent (ephemeral) objects

oFitting bounding boxes

oFiltering out invalid bounding boxes (e.g., boxes under ground or flying)

• Still not perfect: (1) missing objects (2) incorrect boxes

[You et al., Learning to Detect Mobile Objects from LiDAR Scans Without Labels, CVPR 2022]



Learning to Detect Mobile Objects Without Labels

Train a 3D detector and predict

…
…

Train another 3D detector and predict

[You et al., Learning to Detect Mobile Objects from LiDAR Scans Without Labels, CVPR 2022]



Domain adaptation



Challenges-2: Domain Shifts

162

KITTI 
(Germany)

Argoverse
(USA)

nuScenes 
(USA, Singapore)

Lyft 
(USA)

Waymo 
(USA)



Domain adaptation

[Saenko al., 2019] 163



Domain adversarial training

[Credits: Hoffman 2019 ICCV tutorial] 164



Domain adversarial training

Binary classification:
SD: +1
TD: -1

165[Credits: Hoffman 2019 ICCV tutorial]



Domain adversarial training

Binary classification:
SD: +1
TD: -1

166[Credits: Hoffman 2019 ICCV tutorial]



Domain adversarial training

167[Credits: Hoffman 2019 ICCV tutorial]



Domain adversarial training

168

The devils in the details!
Be aware of trivial solutions 
or poor convergence

[Credits: Hoffman 2019 ICCV tutorial]



Example results

169[Tsai et al., CVPR 2018]



3D domain adaptation



• Train 3D object detectors on different source datasets and test it on KITTI

Domain adaptation of 3D perception
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[Wang et al., Train in Germany, Test in The USA: Making 3D Object Detectors Generalize, CVPR 2020] 171



Domain adaptation of 3D perception

• Sizes of the cars are different at different geo-locations

• Learned 3D object detectors will “memorize” the sizes!

172[Wang et al., Train in Germany, Test in The USA: Making 3D Object Detectors Generalize, CVPR 2020]



Domain adaptation of 3D perception
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173[Wang et al., Train in Germany, Test in The USA: Making 3D Object Detectors Generalize, CVPR 2020]



Domain adaptation of 3D perception
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174[Wang et al., Train in Germany, Test in The USA: Making 3D Object Detectors Generalize, CVPR 2020]



Summary

• (Brief and narrow) introduction to computer vision

• Basic deep learning blocks for computer vision
oConvolutional neural nets

oVisual transformers

• Applications:
o2D Recognition

o3D Perception for autonomous driving

o2D Generation

• Practical problems:
o Insufficient (labeled) data

oDomain shifts
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Take home

• Good tutorials online:
oCVPR 2017-2022, ECCV 2018-2020, ICCV 2017-2021 [search tutorial or workshop]

o ICML/NeurIPS/ICLR 2018-2021 [search tutorial or workshop]

• Good framework:
oPyTorch: Torchvision

oPyTorch: Detectron2

• Good source code:
oPapers with code: https://paperswithcode.com/
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Thank you!


