Deep Learning for Computer Vision

TDAI Deep Learning Summer School, 2022 June 2nd, 2022 Wei-Lun (Harry) Chao

Outline

- (Brief and narrow) introduction to computer vision
- Basic deep learning blocks for computer vision

Convolutional neural nets
 Visual transformers

• Applications:

 \circ 2D Recognition

- O 3D Perception for autonomous driving
 O 2D Generation
- Practical problems:

Insufficient (labeled) data
Domain shifts

Recap: Machine learning and deep learning

Machine learning recap

Example: coin classifier

[Figure credit: Y. Abu-Mostafa, M. Magdon-Ismail, H-T Lin. Learning from data.]

Deep learning recap

A sequence of "learnable" computation!

Example: image classification

A sequence of "learnable" computation!

[Gif credits: Gradient descent 3Blue1Brown series S3 E2]

Outline

• (Brief and narrow) introduction to computer vision

• Basic deep learning blocks for computer vision

Convolutional neural nets
Visual transformers

• Applications:

 \odot 2D Recognition

- O 3D Perception for autonomous driving
 O 2D Generation
- Practical problems:
 - Insufficient (labeled) dataDomain shifts

Computer vision

• When the data are about images, videos, or signals captured by 3D sensors ...

[Source: Graham Murdoch/Popular Science]

Image (s)

Video (s) = sequence of images

RGB image (s): Three matrices

• RGB images:

• What is inside each matrix?

{0,1,....,255} o Interval: [0, 1]

0	0	124	255	125	
0	0	125	126	60	
0	0	126	60	126	
0	0	0	127	60	;
0	0	0	0	128	

0	0	124	255	125
0	0	125	126	60
0	0	126	60	126
0	0	0	127	60
0	0	0	0	128

0	0	124	255	125
0	0	125	126	60
0	0	126	60	126
0	0	0	127	60
0	0	0	0	128

Image (s)

Video (s) = sequence of images

RGBD image (s): Four matrices

Entry value = depth

Point cloud

A collection of 3D (or 4D) points

N points = 3-by-N or 4-by-N matrix (should not be processed by convolutional neural nets directly!)

Image aligned with point cloud

Questions?

Image Recognition

(a) Query 2: Product

Retrieval, image-to-image search

Depth estimation and 3D reconstruction

Style transfer

[Figure credit: CycleGAN, ICCV 2017]

Vision & language; e.g., visual question answering

Outline

- (Brief and narrow) introduction to computer vision
- Basic deep learning blocks for computer vision
 - \circ Convolutional neural nets
 - Visual transformers
- Applications:
 - o 2D Recognition
 - O 3D Perception for autonomous driving
 O 2D Generation
- Practical problems:
 - o Insufficient (labeled) datao Domain shifts

Object-centric vs. scene-centric images

Object-centric images:

- contain a **single** class of objects
- The object size is usually large
- The background is simple

Scene-centric images:

- contain **multiple** classes of objects
- The object sizes can vary
- The background is challenging
- Objects may be occluded

Classification on object-centric images

- Single object class (not multi-label cases)
- Properties to capture:
- ➤Translation invariant
- ➤Scale invariant

The progress of deep learning for classification

ImageNet-1K (ILSVRC)

- 1,000 object classes
- 1,000 training images/class
- Each image contains just one class of object!

Metric: Top-k accuracy

- For each image, return a list of top-k possible classes
- If the true class is within the list, the classification is correct

The progress of deep learning for classification

General formulation for all these variants

Prediction = $\operatorname{argmax} \boldsymbol{w}_{c}^{T} f_{\boldsymbol{\theta}}(\boldsymbol{x})$

Image (pixels)

A special computation between layers

- A current node is not directly affected by "all nodes in the previous layer"
- The network "weights" on the edges can be "re-used"

Feature map (nodes) at layer t

Feature map at layer *t*+1

Feature map (nodes) at layer t

Feature map at layer t+1

Feature map (nodes) at layer t

Feature map at layer *t*+1

Convolution: properties

- Process nearby pixels together
- Translation invariant: "local patterns" can show up at different pixel locations
- Can process arbitrary-size images

Convolutional neural networks (CNN)

Receptive field

Linear receptive field

Exponential receptive field (with pooling + down-sampling)
Layers of feature maps (representations)

What does a large response at each layer/channel mean?

First Layer Representation

Second Layer Representation

Third Layer Representation

Representative CNN networks

Representative CNN networks

Representative CNN networks

A general architecture involves

- Multiple layers of convolutions + ReLU (nonlinearity) + pooling + striding
- These result in a (final) <u>feature map</u>
 O Positions on the map correspond to the image
- The map goes through FC layers (MLP)
- Usually, we keep the network till the feature map
 For feature extraction
 For down-stream tasks
 For image-to-image search

Training a CNN for classification

- Model: $\underset{c}{\operatorname{argmax}} \mathbf{w}_{c}^{T} f_{\theta}(\mathbf{x})$ \circ What to learn: weights of convolution filters θ , and $\{\mathbf{w}_{c}\}$
- Training data: $\{(\boldsymbol{x}_n, y_n)\}_{n=1}^N$

100: elephant

Minimize the empirical risk $\min \sum_{n=1}^{N} \ell(\boldsymbol{x}_n, \boldsymbol{y}_n; \boldsymbol{\theta}, \{\boldsymbol{w}_c\})$

• Objective/loss function: $\ell(\mathbf{x}, y; \boldsymbol{\theta}, \{\mathbf{w}_{c}\})$ \circ For example, $\mathbf{1}\left[\operatorname*{argmax}_{c} \mathbf{w}_{c}^{T} f_{\boldsymbol{\theta}}(\mathbf{x}) \neq y\right]$, softmax

The diversity of deep learning models

Neural architecture search

[Zoph et al., 2017]

The diversity of deep learning algorithms

Outline

- (Brief and narrow) introduction to computer vision
- Basic deep learning blocks for computer vision
 - Convolutional neural nets
 Visual transformers
- Applications:
 - o 2D Recognition
 - O 3D Perception for autonomous driving
 O 2D Generation
- Practical problems:
 - Insufficient (labeled) dataDomain shifts

Visual transformer

• A newly emerging way to generate the (final) feature map $f_{\theta}(x)$ \circ Inspired by the transformer blocks in NLP

Prediction = $\operatorname{argmax} \mathbf{w}_{c}^{T} f_{\theta}(\mathbf{x})$

Image (pixels)

CNN vs. Visual transformer

Visual transformer

[Dosovitskiy et al., An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, ICLR 2021]

(2) Vectorize each of them+ encode each with a shared MLP+ "spatial" encoding

(1) Split an image into patches

1-layer of transformer encoder

CNN vs. Visual transformer

- Enable large receptive filed and long-distance relationship
- Enable different local relationships (based on $k_i^{(0)} \otimes q_i^{(0)}$)

Swin transformer

[Liu et al., Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, ICCV 2021]

- Consider smaller patches and local "transformer,"
- Produce feature maps of different resolutions, like CNNs

ImageNet classification accuracy

[Liu et al., 2021]	method	image	#param. FLOF		throughput	ImageNet
		size		FLOFS	(image / s)	top-1 acc.
	RegNetY-4G [48]	224^{2}	21M	4.0G	1156.7	80.0
	RegNetY-8G [48]	224^{2}	39M	8.0G	591.6	81.7
	RegNetY-16G [48]	224^{2}	84M	16.0G	334.7	82.9
	EffNet-B3 [58]	300^{2}	12M	1.8G	732.1	81.6
	EffNet-B4 [58]	380^{2}	19M	4.2G	349.4	82.9
	EffNet-B5 [58]	456^{2}	30M	9.9G	169.1	83.6
	EffNet-B6 [58]	528^{2}	43M	19.0G	96.9	84.0
	EffNet-B7 [58]	600^{2}	66M	37.0G	55.1	84.3
	ViT-B/16 [20]	384^{2}	86M	55.4G	85.9	77.9
	ViT-L/16 [20]	384^{2}	307M	190.7G	27.3	76.5
	DeiT-S [63]	224^{2}	22M	4.6G	940.4	79.8
	DeiT-B [63]	224^{2}	86M	17.5G	292.3	81.8
	DeiT-B [63]	384^{2}	86M	55.4G	85.9	83.1
	Swin-T	224^{2}	29M	4.5G	755.2	81.3
	Swin-S	224^{2}	50M	8.7G	436.9	83.0
	Swin-B	224^{2}	88M	15.4G	278.1	83.5
	Swin-B	384^{2}	88M	47.0G	84.7	84.5

Short summary

A general architecture of CNN or visual transformers involves

- Multiple layers of computations + nonlinearity + (pooling + striding)
- These result in a (final) feature map
- The map goes through FC layers (MLP)
- Usually, we keep the network till the feature map

Outline

- (Brief and narrow) introduction to computer vision
- Basic deep learning blocks for computer vision
 Convolutional neural nets
 Visual transformers
- Applications:
 - \circ 2D Recognition
 - O 3D Perception for autonomous driving
 O 2D Generation
- Practical problems:
 - Insufficient (labeled) dataDomain shifts

Representative 2D recognition tasks

Η

• "Same" input: images

• "Different" outputs:

a)

a) ^{Bep} so urse

C)

Image Recognition

Semantic Segmentation

b)

Object Detection

Instance Segmentation

- b) A set of bounding boxes, each with box location and class probability
- c) An W x H x C feature map
- d) A combination of b) and c)
- "Different" labeled training data

A C-dim class probability vector

Object-vs. scene centric images

ImageNet [object-centric]:

- Image-level class label
- 1K classes (~1M images)
- 21K classes (~14M images)

MSCOCO [scene-centric]:

- Instance-level label
- 82 classes (~0.3M images)

Object-vs. scene centric images

- Object-centric images usually contain a single class of objects.
- Object frequency and semantic cues in different kinds of images can be different!

Semantic segmentation

Semantic segmentation

- Every "pixel" to have a class label
- Properties:
- ➢ High-resolution output
- ➢Context
- ➤Localization
- ≻Multi-scale

New architecture?

Single spatial output!

Vector after vectorization

Up-sampling

Help context + semantics

U-Net

[Ronneberger et al., U-Net: Convolutional Networks for Biomedical Image Segmentation, MICCAI 2015]

U-Net (aka, Hourglass network)

CRF to improve localization

[Chen et al., DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs, PAMI 2017]

Atrous Spatial Pyramid Pooling (ASPP) for multi-scale features

Example results

[Nirkin et al., HyperSeg, 2021] Ground truth

[Zhao et al., Pyramid scene parsing network, 2017]

Object detection + instance segmentation

Object detection

- Properties:
- Labels + bounding boxes
- ➤Localization
- ➢Multi-scale
- ➢Context
- "Undetermined" numbers

[class, u-center, v-center, width, height]

Naïve way

Sliding window
➤Time consuming
➤What size?

R-CNN

- Objectness proposal
- CNN classifier
- Box refinement

[Girshick et al., Rich feature hierarchies for accurate object detection and semantic segmentation, CVPR 2014]

Selective search for proposal generation

• Step 1:

Not deep learning
super-pixel-based segmentation

• Step 2:

 Recursively combine similar regions into larger ones

Input Image

Initial Segmentation

• Step 3: • Boxes fitting

Input Image

[Girshick et al., Rich feature hierarchies for accurate object detection and semantic segmentation, CVPR 2014]

Per-image computation

<u>Per-region computation</u> for each $r_i \in r(I)$

[Girshick, CVPR 2019 tutorial]

R-CNN

Box regression:
>(du, dv)
>(dw, dh)

By offset = MLP(feature)

- Problems:
- Slow: every proposal needs to go through a "full" CNN
- >Mis-detection: the proposal algorithm is not trained together

Fast R-CNN

[Girshick, Fast R-CNN, ICCV 2015]

[Girshick, CVPR 2019 tutorial]

ROI pooling vs. ROI align

Making features extracted from different proposals the same size!

[Ren et al., Faster r-cnn: Towards realtime object detection with region proposal networks, NIPS 2015]

Faster R-CNN

[Girshick, CVPR 2019 tutorial]

How to develop RPN (region proposal network)?

[Ren et al., 2015]

5 * 8 * K * (2 + 4)

What do we learn from RPN?

- "How to encode your labeled data so that your CNN can learn from them" is important!
- Inference: predict these "values" and accordingly transfer them to bounding boxes!

Questions?

How to deal with object sizes?

(a) Featurized image pyramid

(b) Single feature map

(c) Pyramidal feature hierarchy

[Lin et al., Feature Pyramid Networks for Object Detection, CVPR 2017]

(d) Feature Pyramid Network

Mask R-CNN

[He et al., Mask r-cnn, ICCV 2017]

[Girshick, CVPR 2019 tutorial]

Mask R-CNN: for instance segmentation

2-stage vs. 1-stage detectors

- Other names: single-shot, single-pass, ... (e.g., YOLO, SSD)
- Difference: no ROI pooling/align

2-stage detector

Exemplar 1-stage detectors

Exemplar 1-stage detectors (Retina Net)

2-stage vs. 1-stage detectors

- Pros for 1-stage: • Faster!
- Cons for 1-stage: • Too many negative locations; scale

[Redmon et al., 2016]

Inference: choose few from many

• Non-Maximum Suppression (NMS)

Before non-max suppression

Non-Max Suppression

After non-max suppression

Example results

[Zhang, et al., 2021]

Outline

- (Brief and narrow) introduction to computer vision
- Basic deep learning blocks for computer vision
 Convolutional neural nets
 Visual transformers
- Applications:
 - o 2D Recognition
 - O 3D Perception for autonomous driving
 O 2D Generation
- Practical problems:

 Insufficient (labeled) data
 Domain shifts

2D object detection

Long-standing computer vision tasks

2D instance segmentation

[Source: BDD100K dataset, CVPR 2016]

LiDAR-based 3D perception

LiDAR-based 3D perception

[Source: Graham Murdoch/Popular Science]

LiDAR-based 3D perception

You can view the LiDAR point clouds from different angles

Frontal view

Bird's-eye view (BEV)

Two major ways to process LiDAR point clouds

• Point-wise processing

PointNet [Qi et al., 2017]
PointNet++ [Qi et al., 2017]
PointRCNN [Shi et al., 2019]

0...

• Voxel-based processing: turn points into a tensor (e.g., W x D x H x F) O PointPillars [Lang et al., 2019]

• VoxelNet [Zhou et al., 2017]
• PIXOR [Liang et al., 2018]

0...

Voxel-based processing + 3D object detectors

• Occupation (PIXOR): 3D points as a 3D occupation tensor from bird's-eye-view

[Yang et al., PIXOR: Real-time 3D Object Detection from Point Clouds, 2019]

Voxel-based processing + 3D object detectors

• VoxelNet (4D tensors with voxel grid feature: W x D x H x F)

More complicated 4D tensors with voxel grid feature: W x D x H x F

[Zhou et al., VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection, 2017]

Voxel-based processing + 3D object detectors

• PointPillars (3D tensors with voxel grid feature: W x D x (H x F))

[Lang et al., PointPillars: Fast Encoders for Object Detection from Point Clouds, 2019]

Questions?

Point-wise processing

[Qi et al., PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, 2017]

Point-wise processing

[Qi et al., PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space, 2017]

Point-wise 3D object detectors

[Qi et al., Frustum PointNets for 3D Object Detection from RGB-D Data, 2018]
Point-wise 3D object detectors

[Shi et al., PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud, 2019]

Example results

[Chen et al., CVPR 2017]

Image-based 3D perception

Affordability and reliability

Images provide no depth

LiDAR is expensive (> \$10K) Over-reliance on LiDAR is risky

Pyramid stereo matching network (PSMNet)

[Chang et al., Pyramid stereo matching network, 2018]

Continuous Disparity Network

LiDAR vs. camera-based depth

Camera-based depth estimation

depth:
$$z = Z(u, v)$$
,
width: $x = \frac{(u - c_U) \times z}{f_U}$,
height: $y = \frac{(v - c_V) \times z}{f_V}$,

Pseudo-LiDAR representation

Pseudo-LiDAR framework

• Pseudo-LiDAR representation: gluing depth estimation + LiDAR-based detection

SOTA camera-based depth estimators and LiDAR-based de

• GC-Net (ICCV 17) Yan Wang, <u>Wei-Lun Chao</u>, Divyansh Garg, Bharath Hariharan, Mark Campbell, and Kilian O. Meinberger, "Pseudo-LiDAR from Wetal Gepth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving," •

Data representation is important!

• LiDAR-based: 3D point clouds

[Source: VoxelNet, CVPR 2018]

• Camera-based: 2D depth maps

[Source: Mask R-CNN, ICCV 2017]

• Processing depth as an image leads to large distortion!

Example results

Lidar

pseudo-LiDAR

Depth-map

Outline

- (Brief and narrow) introduction to computer vision
- Basic deep learning blocks for computer vision
 Convolutional neural nets
 Visual transformers

• Applications:

2D Recognition
3D Perception for autonomous driving
2D Generation

Practical problems:

 Insufficient (labeled) data
 Domain shifts

Generative models

Generative models

image manifold: p(x)

[Credits: Tutorial on Diffusion Models]

What and how to learn?

Real image: $x \sim q(x)$

Generative model: $\mathbf{x}' \sim p_{\theta}(\mathbf{x}')$ $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ $\mathbf{x}' \sim p_{\theta}(\mathbf{x}' | \mathbf{z})$ or $\mathbf{x}' = g_{\theta}(\mathbf{z})$

Objective 1

- p_{θ} can explain real images $x \sim q(x)$
- Maximize $p_{\theta}(x)$, where $x \sim q(x)$
- Example: variational auto-encoder (VAE)

Objective 2

- $x \sim q(x)$ and $x' \sim p_{\theta}(x')$ are indistinguishable
- Example: generative adversarial net (GAN)

Generative adversarial net (GAN)

Iterate between:

- Update *D* to distinguish between $\mathbf{x} \sim q(\mathbf{x})$ and $\mathbf{x}' = G(\mathbf{z}), \mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$
- Update G such that D cannot distinguish between $\mathbf{x} \sim q(\mathbf{x})$ and $\mathbf{x}' = G(\mathbf{z}), \mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$

[Credits: Mengdi Fan and Xinyu Zhou, CSE 5539 course presentation]

Example results (by Style-GAN)

[A Style-Based Generator Architecture for Generative Adversarial Networks, CVPR 2019]

Other generative models

• Denoising Diffusion Probabilistic Models (PPDM)

 \odot Learn to inverse the diffusion process

 \odot Can generate very high-quality images

Gradually add Gaussian noise and then reverse

Diffusion models:

Denoising by neural networks (each step by a U-net!)

[Denoising Diffusion Probabilistic Models, NeurIPS 2020]

Other generative models

• Denoising Diffusion Probabilistic Models (PPDM)

[Denoising Diffusion Probabilistic Models, NeurIPS 2020]

Other generative models

[Diffusion Models Beat GANs on Image Synthesis, NeurIPS 2021]

Conditional image generation

Replace $z \sim \mathcal{N}(0, \mathbf{I})$ by

- Real image: image translation from domain A to domain B
- Can learn with "unpaired" data or "paired" data

[Wang et al., 2018]

Conditional image generation

Replace $z \sim \mathcal{N}(0, \mathbf{I})$ by

- Text: text-conditioned image generation
- Usually need to learn with "paired" data

vibrant portrait painting of Salvador Dalí with a robotic half face

a shiba inu wearing a beret and black turtleneck

a close up of a handpalm with leaves growing from it

an espresso machine that makes coffee from human souls, artstation

panda mad scientist mixing sparkling chemicals, artstation

a corgi's head depicted as an explosion of a nebula

[Hierarchical Text-Conditional Image Generation with CLIP Latents, arXiv 2022]

Outline

- (Brief and narrow) introduction to computer vision
- Basic deep learning blocks for computer vision
 Convolutional neural nets
 - Visual transformers
- Applications:

O 2D Recognition
O 3D Perception for autonomous driving
O 2D Generation

• Practical problems:

Insufficient (labeled) data
 Domain shifts

"Some" challenges in DL for CV

- Deep neural networks are "labeled" data hungry
- Mismatch between training and test data

Challenge-1: Insufficient (labeled) data

- Example: ImageNet-1K (ILSVRC)
 - \circ 1,000 object classes
 - \circ 1,000 training images per class

It's hard to collect labeled data

- Collecting and annotating data is time-consuming and expensive
- Crowdsourcing can be noisy and may not be feasible for certain problems o e.g., medical images and applications
- For some applications, even "unlabeled" data can be hard to collect o e.g., fine-grained classes, long-tailed problems, data privacy and protection

Fine-grained classes

[Credits: Rogerio Feris, ICCV-2019 slides]

Long-tailed distribution

Collecting dense labels is even harder

• Images with detailed instance segmentation labels

[He et al, 2017]

- MSCOCO: ~100 classes from 328K images
- Complex tasks, however, have fewer labeled data ...
Long-tailed distribution on densely-labeled data

LVIS 30000 25000 20000 15000 10000 5000 0 grape.n.01 bicycle.n.01 bench.n.01 bench.n.01 laptop.n.01 table.n.02 statue.n.01 statue.n.01 gull.n.02 baseball.n.02 baseball.n.03 binker.n.01 strrup.n.01 dining_table.n.01 bath_mat.n.01 butter.n.01 butter.n.01 butter.n.02 butter.n.02 butter.n.02 butter.n.02 butter.n.01 butter.n.02 anana.n. parrot.n. flute.n. hog.n. manger.n. tortilla.n. fee_ sugarcah. whiskey.r hot_plate. ~mpoline ~atc' aathervane. pinecone. windmill. namburger. toast. kayak. kayak. kayak. able_lamp. pelican. pelican. paintbrush. m_pitcher. cast. camel. golf_club. offee_filter ckey_stick mail_slot cowbel ladybu_§

Visual Genome

Self-supervised learning

Can we learn a neural network from unlabeled data?

- What to learn?
- How to learn?

Traditional paradigms

• Unsupervised learning

Discover the structure (e.g., clusters, groups, or classes) of the data instances
 Estimate the distribution/density p(x) of the data instances
 Generative models

• Assumption: "similar" data should be grouped together

Deep self-supervised learning paradigms

• One more purpose:

O Unsupervised feature or neural network learning

Image-to-image search

Initialize "downstream" tasks like for long-tailed, few-shot classification

Deep self-supervised learning paradigms

• Generative:

0...

AE (auto-encoder), VAE
Masked or auto-regressive training

Deep self-supervised learning paradigms

Contrastive learning

[Google AI blog, Advancing Self-Supervised and Semi-Supervised Learning with SimCLR]

Data augmentation

[Chen et al., A Simple Framework for Contrastive Learning of Visual Representations, ICML 2020]

Results

Method	Architecture	ImageNet (Self-supervised)	
		Top-1	Top-5
Supervised	ResNet50	76.5	-
CPC [38]	ResNet v2 101	48.7	73.6
InstDisc [12]	ResNet50	56.5	-
LA [50]	ResNet50	60.2	-
MoCo [14]	ResNet50	60.6	-
BigBiGAN [51]	ResNet50 $(4x)$	61.3	81.9
PCL [52]	ResNet50	61.5	-
SeLa [53]	ResNet50	61.5	84.0
PIRL [17]	ResNet50	63.6	-
CPCv2 [38]	ResNet50	63.8	85.3
PCLv2 [52]	ResNet50	67.6	-
SimCLR [15]	ResNet50	69.3	89.0
MoCov2 [47]	ResNet50	71.1	-
InfoMin Aug [19]	ResNet50	73.0	91.1
SwAV [13]	ResNet50	75.3	-

Linear evaluation:

- Freeze the feature extractor
- Only learn the last FC layer (i.e., linear classifier)

[Jaiswal et al., A Survey on Contrastive Self-supervised Learning, 2021]

Unsupervised 3D object detection

Can we learn a 3D object detector from unlabeled data?

3D object detection

3D instance segmentation

• We focus on MOBLE traffic participants (e.g., cars, pedestrians, cyclists, etc.) O How can we discover mobile objects from unlabeled LiDAR data?

• Simple heuristics:

Mobile objects are unlikely to stay persistent at the same location over time.
 We can easily collect multiple traversal data of repeated routes (many of us drive through the same routes every day).

[Diaz-Ruiz et al., Ithaca365: Dataset and Driving Perception under Repeated and Challenging Weather Conditions, CVPR 2022]

Learning to Detect Mobile Objects Without Labels

Point clouds from past traversals

Current point cloud

Entropy of the histogram quantifies the persistency!

[You et al., Learning to Detect Mobile Objects from LiDAR Scans Without Labels, CVPR 2022]

Learning to Detect Mobile Objects Without Labels

Weak labels through simple heuristics:

- Clustering low persistent (ephemeral) objects
- $\ensuremath{\circ}$ Fitting bounding boxes
- Filtering out invalid bounding boxes (e.g., boxes under ground or flying)

• Still not perfect: (1) missing objects (2) incorrect boxes

[You et al., Learning to Detect Mobile Objects from LiDAR Scans Without Labels, CVPR 2022]

Learning to Detect Mobile Objects Without Labels

[You et al., Learning to Detect Mobile Objects from LiDAR Scans Without Labels, CVPR 2022]

Domain adaptation

Challenges-2: Domain Shifts

Domain adaptation

[Credits: Hoffman 2019 ICCV tutorial] 164

165

166

Example results

[Tsai et al., CVPR 2018]

3D domain adaptation

• Train 3D object detectors on different source datasets and test it on KITTI

[Wang et al., Train in Germany, Test in The USA: Making 3D Object Detectors Generalize, CVPR 2020]

171

• Sizes of the cars are different at different geo-locations

• Learned 3D object detectors will "memorize" the sizes!

[Wang et al., Train in Germany, Test in The USA: Making 3D Object Detectors Generalize, CVPR 2020] 172

Resize points and labels in the source domain

Re-training

173

3D Moderate Average Precision

[Wang et al., Train in Germany, Test in The USA: Making 3D Object Detectors Generalize, CVPR 2020]

Resize points and labels in the source domain

Re-training

3D Moderate Average Precision

[Wang et al., Train in Germany, Test in The USA: Making 3D Object Detectors Generalize, CVPR 2020]

Summary

- (Brief and narrow) introduction to computer vision
- Basic deep learning blocks for computer vision

Convolutional neural nets
 Visual transformers

• Applications:

 \circ 2D Recognition

- O 3D Perception for autonomous driving
 O 2D Generation
- Practical problems:

Insufficient (labeled) data
 Domain shifts

• Good tutorials online:

CVPR 2017-2022, ECCV 2018-2020, ICCV 2017-2021 [search tutorial or workshop]
 ICML/NeurIPS/ICLR 2018-2021 [search tutorial or workshop]

• Good framework:

PyTorch: Torchvision
PyTorch: Detectron2

• Good source code:

o Papers with code: https://paperswithcode.com/

Thank you!

