
Session 1:
Overview of 

Neural 
Networks and 
Deep Learning

Eric Fosler-Lussier

TDAI Foundations of Data Science 
& Artificial Intelligence
Deep Learning Summer School



• Basics of Neural Networks: how and why they work
• (simple cases only!)

• The case for multiple layers
• Demo 1: Building a 4-2-4 autoencoder in Pytorch
• A brief tour of the neural network model zoo

• A deeper look: convolutional networks for image processing
• Take-home demo 2: Exploring multi-layer perceptrons vs 

convolutional networks
• Sequence processing
• Alternative learning strategies

Plan for today



A trainable, mathematical model for finding classification boundaries
(or regression values, or….)

Inspired by biological neurons
• Neurons collect input from receptors, other neurons
• If enough stimulus collected, then neuron fires

Inputs in artificial neurons are variables, outputs of other neurons
Output is an “activation” determined by the weighted inputs

Neural networks



The input to a neuron is given as 𝑖𝑛! = ∑"𝑤"!𝑎" = 𝒘𝑻𝒂

The activation of the unit is given as 𝑎! = 𝑔 𝑖𝑛! = 𝑔 ∑"𝑤"!𝑎"

A Basic Neural Network Unit

a1

w1,i

a0=1
w0,i

w2,i
a2

S

g

ai

bias

Q: Is linear regression a neural network by this definition?  If so, what is g(x)?



The g() function acts as a decision rule
Thresholding: hard boundary

g(x)=0 if x<0, 1 otherwise  (problem: not differentiable!)
Other popular nonlinear functions:

Activation function

Sigmoid

€ 

g(x) =
1

1+ e−x

Hyperbolic tangent

g(x) = tanh(x)

ReLU (Rectified Linear Unit)

g(x) = x if x>0, 0 otherwise



We can train a neural network to provide probability 
estimates over classes using a competitive classification
Train neural network with one-hot encoding for targets

• If there are n different outputs, use n output neurons
• Training signal is 1 for correct class, 0 for others

• Example: correct class is “C” out of A,B,C,D,E:  targets 0,0,1,0,0

Last layer is a competitive softmax layer

𝑒𝒘$
%𝒙

∑# 𝑒
𝒘&
%𝒙

Multi-class classification

A

B

C

D

E

wA
x1

x2

x3

x4

x5

x6

x7



An array of neurons is called a perceptron
A single neuron can be used to represent the logical functions 
and, or, not

Single layer perceptron &
logical functions

x1

x2

0

1

10

0

0

0

1
x1

w1

x0=1
w0

w2
x2

S

g
ai

and

€ 

ai = g w j x j
j= 0

2

∑
# 

$ 
% % 

& 

' 
( ( > 0



Setting w0 to -1.5 and w1,w2 to 1 gives “and” rule.
Similar for or, not.

Single layer perceptron &
logical functions

x1

x2

0

1

10

0

0

0

1
x1

1

x0=1
-1.5

1x2
S

g
ai

and

€ 

ai = g w j x j
j= 0

2

∑
# 

$ 
% % 

& 

' 
( ( > 0



True boundary is blue 
dotted line
Watch as red line 
moves - red points 
are ones with errors

Training a Single Perceptron

Perceptron Learning Rule:  
𝑤 ← 𝑤 + 𝜂 𝑑 − 𝑦 𝑥

Weight
Learning rate
Desired output – current output
Input



Originally, a lot of excitement over neural networks
Minsky and Pappert (1969) then showed that there were 
problems that you couldn’t represent using single layer 
perceptrons

XOR problem: need for multiple layers

x1

x2

0

1

10

0

1

1

0

?XOR



Notice that you can express XOR as a combination of other 
functions:
x1 XOR x2 = (x1 v x2) ^ ~(x1^x2)

We can build an ensemble network:
multi-layer perceptron

XOR problem

and

or

x0

x1

x2

-0.5
-1

1

xor



Key idea: output from first neurons becomes input for later 
neurons
Middle node known as hidden layer

Multi-layer perceptron

a1

a2

a0

b0

b1

c0

€ 

o = g w j
bcg wkj

abak
k
∑
# 

$ 
% 

& 

' 
( 

j
∑
# 

$ 
% % 

& 

' 
( ( 



Neural networks try to minimize some sort of loss/error function
How? Gradient Descent Optimization (see next session)!

In general: compute the gradient of the loss with respect to weights, take 
a step in direction opposite gradient

Ex: linear regression y=wx+b – minimize (mean) squared error to desired 
output d

𝐸 =
1
2
𝑑 − (𝑤𝑥 + 𝑏) !

Training Neural Networks

𝑊! ← 𝑊! − η
𝜕𝐸
𝜕𝑊!

𝑤 ← 𝑤 − η 𝑑 − 𝑤𝑥 + 𝑏 𝑥
𝑏 ← 𝑏 − η 𝑑 − 𝑤𝑥 + 𝑏



Linear regression via gradient descent

y=wx+b w

b



Error is now a function of multiple
layers.  Assuming single desired output d:

The general rule for updating is still

For multiple layers, need to use chain rule of calculus to update 
lower layers: error backpropagation (backprop)

[The math can get real messy!]
Modern network architectures keep track of gradients (derivatives of error) 
with variables and can do this automatically!

Training Multi-Layer Perceptrons

𝐸 =
1
2
𝑑 − 𝑔"(𝒘"

#𝑔$(𝒘$#𝒙) )"

𝑤! ← 𝑤! − η
𝜕𝐸
𝜕𝑤!



For every training pattern, we “forward” the input and get an 
output, which may be wrong (since we have targets).

We have that error and want to assign the blame to weights 
proportionally
We can compute the error derivative for the last layer

• Accumulate blame at each of the hidden nodes by summing over 
weights attached to that node

Now distribute blame to previous layer

Intuition behind backprop



Consider a function 𝑧 = 𝑓 𝑓 𝑓 𝑤 , compute '(
')

.

Derivative Graph Computation

User specified
computational
graph

Automatically derived
derivative graph

Goodfellow, Bengio, Courville  2016
Goodfellow, Bengio, Courville  2016



Derivative Graph Computation for MLP

Graph for computing cross-
entropy cost function in 
MLP with one hidden layer, 
ReLU units, weight decay. 

Goodfellow, Bengio, Courville  2016



Demo #1: Training a 4-2-4 autoencoder

A simple MLP can encode 
“one-hot” bit strings

Idea: make the output match the 
input
“0100” -> hidden -> “0100”

???

https://bit.ly/38zV6XN



Demo #1: Training a 4-2-4 autoencoder

This model has two layers
Layer 1: 4x2 fully connected layer (+ 
bias term)
Each hidden node takes summed 
input, then passes through sigmoid

Layer 2: 2x4 fully connected layer 
(+bias term)
Again pass the summed input 
through sigmoid (0-1 output).

fc àsigmoid fc àsigmoid

https://bit.ly/38zV6XN



Demo #1: Training a 4-2-4 autoencoder

Building a learner in Pytorch

1) Define your architecture
1) Initialize structure
2) Define a “forward” function

2) Choose a loss function
3) Choose an optimizer
4) Train the model

fc àsigmoid fc àsigmoid

https://bit.ly/38zV6XN



Break



Model Zoo: Architectures

The Multilayer Perceptron (MLP) 
aka Deep Neural Network (DNN) 
is a workhorse, but is expensive in 
parameters

Different models have been 
developed to handle different 
situations:

https://towardsdatascience.com/training-deep-neural-networks-9fdb1964b964

Convolutional Networks: local feature 
detection, location invariant (images)

Recurrent Networks: handle sequences of 
data (speech, text, economics)

Attention Models/Transformers: for 
sequence/spatial data, focus attention 

more directly (images/text/speech)



We implied that we have to have a supervised signal to train 
neural networks.  However there are newer techniques that can 
be used (perhaps in combination with supervision):

Model Zoo: New Kinds of Training

Student-teacher learning: use one model to train another 
(e.g. train a small model using a large model for training)

Generative adversarial networks (GANs): train a generation model (G) to create 
output (images, audio,…) that tries to fool a discrimination model (D) into 

thinking the generated output is real

Contrastive learning: make the representations of objects of the same class 
similar and of different classes farther apart



In theory, you can stack as many layers on top of each other as 
you want

• Complexity: how many parameters?
• Assume 100 inputs, 1000 hidden units per layer, 1 output

Deep Neural Networks

https://towardsdatascience.com/training-deep-neural-networks-9fdb1964b964



In theory, you can stack as many layers on top of each other as 
you want

• Complexity: how many parameters?
• Assume 100 inputs, 1000 hidden units per layer, 1 output

• Input layer: 100x1000 = 100,000 parameters
• Each hidden layer: 1000x1000 = 1,000,000 parameters
• Output layer: 1000x1 = 1000 parameters
• Total: k x 1m + 101,000 parameters for k layers

Problem: as you add more layers, the gradient gets smaller and 
smaller (vanishing gradient problem)

• Translation: it’s harder to learn the farther away you are from the signal

Deep Neural Networks



What do multiple layers do?

Linear layers only perform 
linear transforms of input space
(reflection, rotation, 
dilation,….)

Nonlinearities allow for a wider 
range of transformations (e.g.
folding)

x1

x1 OR X2 

0

1

10

0 1

0

x2

0

1

10

0

1

1

0

x 1
AN

D 
 X

2 

https://www.deeplearningbook.org

Montufar et al 2014: 
folding around

rectifier nonlinearity 

XOR network “folds” cases of 
OR, not AND together 

https://www.deeplearningbook.org/


We can use MLPs to train models that tell us something about the 
semantics of words

• Core idea: two words with similar meanings should have similar 
contexts
• The _______ sat on the throne.  (King – Queen)

• Try to predict the words that co-occur with each word

Initial weight matrix becomes a real valued embedding of the 
words of the vocabulary

MLP applications
Word2Vec: Embeddings for words



Word2Vec: Embeddings for words

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/



Find the penguins…

Wikimedia Commons



Image detectors might look for similar 
patches over an image…



Fully connected networks have a lot of parameters
Sometimes want networks that have the same pattern detectors 
over different parts of the image

• In other words: shift-invariant

Convolutional networks use smaller layers but convolve across the 
entire input (image, sentence, etc)

Convolutional networks



From fully connected to convolutional 
networks

Thanks to DeLiang Wang for some of these slides

28
x2

8 
lin

ea
riz

at
io

n

28

28

https://cs231n.github.io/convolutional-networks/



• Three kinds of layers to build a CNN architecture
• Convolutional layer
• Pooling layer
• Fully connected layer, like in conventional MLP

• Three operations
• Convolution (correlation)
• Max pooling
• Rectified linear unit (ReLU) as activation function

Convolutional Networks (CNNs) in
more depth



2-D convolution

Output

Input

Kernel

https://www.deeplearningbook.org/lecture_slides.html



Example: edge detection by convolution

https://www.deeplearningbook.org/lecture_slides.html



32

3
width

height

32
depth

Convolution layer

32x32x3 image, with spatial structure

https://www.deeplearningbook.org/lecture_slides.html



• 32x32x3 image

• 5x5x3 filter
32

• Convolve the filter with the image

• That is, “slide over the image
spatially, computing dot products”

Filters extend the full depth 
of the input volume

32

3

Convolution layer (cont.)



32

32x32x3 image  
5x5x3 filter

32

1 number:
the result of taking a dot product between the  
filter and a small 5x5x3 chunk of the image
(i.e. 5x5x3 = 75-dimensional dot product + bias)

3

Convolution layer (cont.)

W

𝐖#𝐱 + 𝑏



32

32x32x3 image  
5x5x3 filter

32

convolve (slide) over all  
spatial locations

activation map

3 1

28

28

Convolution layer (cont.)



32

32

3

32x32x3 image  
5x5x3 filter

convolve (slide) over all  
spatial locations

activation maps

1

28

28

Convolution layer (cont.)

Consider a second, green filter



32

32

3

Convolution layer

Feature maps

6

28

28

Convolution layer (cont.)

We stack these to get a new “image” of size 28x28x6



32

32

3

CONV  
(e.g. 6
5x5x3
filters)

28

28

6

CONV
(e.g. 10  
5x5x6
filters)

CONV

10

24

24

CNN with multiple layers

https://www.deeplearningbook.org/lecture_slides.html



Max-pooling: over some group of convolutions, copy the value of 
the highest one

• Imagine you had a detector for “2” 
• Apply across all possible shifts of the detector, and then take the highest output.
• Creates a shift-invariant detector

Dropout
• Rather than computing the output of each unit exactly, set x% of them 

randomly to zero
• Promotes a more robust representation

Making CNNs more robust



Cross channel (filter) pooling and invariance 
to learned detectors

Large response  
in pooling unit

Large response 
in detector 1

Large response
in detector 3

Large response  
in pooling unit

https://www.deeplearningbook.org

https://www.deeplearningbook.org/


0.1 1. 0.2

1. 0.2

0.1

0.1

0.0 0.1

Max pooling with downsampling

https://www.deeplearningbook.org

https://www.deeplearningbook.org/


Input Image

Convolution 
(Learned)

Nonlinearity

Spatial pooling

Feature maps

Input Feature maps

.

.

.

Typical CNN operations

https://www.deeplearningbook.org

https://www.deeplearningbook.org/


Input Image

Convolution 
(Learned)

Nonlinearity

Spatial pooling

Feature maps

Rectified Linear Unit

Modern activation function or nonlinearity: 
Rectified Linear Unit (ReLU)

𝑅𝑒𝐿𝑈 𝑥 = '𝑥 if 𝑥 ≥ 0
0 if 𝑥 < 0

Typical CNN operations

https://www.deeplearningbook.org

https://www.deeplearningbook.org/


Input Image

Convolution 
(Learned)

Non-linearity

Spatial pooling

Feature maps

Max

Typical CNN operations

https://www.deeplearningbook.org

https://www.deeplearningbook.org/


Convolutional Neural Network for Digit 
Recognition

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53



Fashion-MNIST

https://github.com/zalandoresearch/fashion-mnist 28

28



Take-Home Demo #2

Code to play around with Fashion-
MNIST data set

https://bit.ly/3Q5Tp5B

https://bit.ly/3Q5Tp5B


Deep Architectures for Computer Vision

Convolutional NNs kept getting 
bigger and bigger

Left: VGG-19 and Resnet-34 
architectures

Residual connections that allow 
connection between layers are 
important for deep learning

https://doi.org/10.48550/arXiv.1512.03385

“Deep Residual Learning for Image Recognition“ 
He et. al, CVPR 2016

https://doi.org/10.48550/arXiv.1512.03385


For sequences of input (text, speech, videos) several approaches for 
handling sequences:
Deep Neural Networks with windows: use a sliding window over input 
sequence to predict sequence of outputs

• Time Delay Neural Networks (TDNNs)
Recurrent networks which keep a “history” component

• Recurrent Neural Networks (RNNs) – introduce history
• Long-Short Term Memory Networks (LSTMs), Gated Recurrent Units 

(GRUs) – have the ability to remember/forget history
Attention-based models which learn which parts of the input to pay 
attention to

• Transformers – encode input with attention and then decode output

Handling sequences



Key idea: like a deep neural network, but have the hidden units 
feed back to themselves
Hidden units keep a history state across inputs
Training requires
unrolling across time
Similar vanishing
gradient problem for
long sequences

Recurrent networks

https://www.bouvet.no/bouvet-deler/explaining-recurrent-neural-networks



LSTMs and GRUs make the history conditional

Both have gating mechanisms to let information through or not.
The ability to pass information across multiple time steps helps with
the vanishing gradient problem. 

http://dprogrammer.org/rnn-lstm-gru



Recurrent structures also have difficulty with long-term 
dependencies
When we are making a local decision to output something, look 
differentially at the different parts of the input to create a context 
vector

• Model: what is the probability that this part of the input is important?
• Use softmax to determine probability distribution of using history 

vector

Attention can be used either with recurrent or non-recurrent 
networks

Attention-based learning



Attention example (Machine Translation)

• Model shown is an “encoder-
decoder” model
• Input (blue) encodes a 

sentence; each time step of 
recurrent model
• For every output (decoded) 

word, we learn  probability of 
which input words are likely to 
contribute to the correct 
translation.

https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129



Transformers are a non-recurrent model that use attention over 
sequences.

• Popularized by paper “Attention is All You Need” (Vaswani et al 2017)

Also uses “self attention” in the encoder to tell what parts are 
important for the history vector
Encoders and decoders are stacked to create different levels of 
representations

Transformers

https://doi.org/10.48550/arXiv.1706.03762

https://doi.org/10.48550/arXiv.1706.03762


Transformers

http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/


Application: BERT (Bidirectional Encoder 
Representations from Transformers)

http://jalammar.github.io/illustrated-bert/

12 Transformer Layers

https://doi.org/10.48550/arXiv.1810.04805

(Devlin et al 2018)

BERT (and similar models)
are often used for
transfer learning 

Fine-tuning is one type of
transfer learning – take
pretrained net and train on
new task (e.g. sentiment analysis)

http://jalammar.github.io/illustrated-bert/
https://doi.org/10.48550/arXiv.1810.04805


Application: BERT (Bidirectional Encoder 
Representations from Transformers)

http://jalammar.github.io/illustrated-bert/

12 Transformer Layers

http://jalammar.github.io/illustrated-bert/



Up to now, “supervision” has only meant giving the correct 
label/answer to a network.

However, can we get networks to start training each other?
• Often, might have a “big” model that can handle most cases, but might 

not be what you want to use
• Might want to make the model smaller
• Might want to make the model more robust
• Might want to combine several models

• Knowledge distillation (KD), or student-teacher learning, can be used to 
have one model help train another

Student-Teacher Learning



Examples of Knowledge Distillation

Wang & Yoon TPAMI 2021, Knowledge Distillation and Student-Teacher Learning for Visual Intelligence: A Review and New Outlooks

Model Compression Model Combination Model Robustness



GANs use adversarial training that set two models against each 
other:

• G: Generator model that makes fake examples
• D: Discriminator that tries to tell real from fake models

Generative Adversarial Networks



Generative Adversarial Learning

Random 
Number

Z

Generator
G(Z,θ)

Fake
Example

X

Discriminator
D(X,θ’)

True
Example

X’

Fake?

ℒ% 𝑿 = − $
"
𝔼𝑿~(!"#" log 𝐷 𝑿 − $

"
𝔼𝒁 log 1 − 𝐷 𝐺 𝑍

ℒ* 𝑿 = − ℒ% 𝑿

Goodfellow 2019

Minimax Game

Must be differentiable



Conditional Generative Adversarial Learning

Random 
Number

Z

Generator
G(Z,θ)

Fake
Example

X

Discriminator
D(X,θ’)

True
Example

X’

Fake?

Goodfellow 2019

Info about
what to

generate



What can you do with GANs?

Chan 2018 – Everybody Dance Now https://www.youtube.com/watch?v=PCBTZh41Ris

https://www.youtube.com/watch?v=PCBTZh41Ris


Everybody Dance Now (Chan 2018)



Summary

Perceptron

Single 
Competitive 
Layer

Deep Feed 
Forward Nets

CNNs, RNNs, 
Attention

Larger Models 
(BERT, 
Resnet50, …)

Knowledge Distillation
Transfer Learning
Adversarial Learning


