Data analytics reveal how we decide

Can you identify the critical difference between these two scenarios?  In one, a medication has a 1 percent rate of adverse side effects in those who use it. In the other, a medication causes adverse side effects for one person in one hundred.

If the situations sound identical, it’s likely that you’re good at math. For consumers who are not math-literate, however, the second scenario—the one that affects a person—implies a higher risk.

petersAccording to Ellen Peters, PhD, director of Ohio State’s Decision Sciences Collaborative, consumers in healthcare settings often struggle with numeracy. Peters uses data analytics to learn how to turn data into usable, meaningful information for decision-makers, especially in healthcare.

It’s almost transcendent—a study of data analytics to improve data analytics. “I do not use data analytics is a traditional sense,” she allows. “I use it to look at how humans process information, judge and decide.”

Frequently in healthcare situations, Peters says, the person who dispenses information has a high level of understanding when it comes to data, while the audience who is the decision maker does not. Her goal is to understand how to bridge the gap and help the information provider adjust to the needs of the audience.

krajbich.70c79e60TDA@OhioState member Ian Krajbich, PhD, a neuroeconomist in Ohio State’s Department of Psychology and Department of Economics, is another member of the Decision Science Collaborative who uses data analytics—in his case, to look beyond choice outcomes into the physiological underpinnings of human decisions.

Data, for example, can be analyzed to explore how people make low-stakes choices in snack foods. As an illustration, Krajbich offers an experiment where student participants are placed in front of computer screens equipped with cameras that measure eye movement and gaze time. The participants are shown two snack foods, such as an apple and an orange. By tracking and measuring a student’s gaze, researchers can predict which snack any particular student will choose.

“It’s more than identifying the options and making a choice, there’s looking back and forth,” Krajbich says. “The object that tends to be chosen is the one that is interesting; it’s the one that is seen and holds attention.” To that end, the images of the apple or orange can be manipulated to appear more interesting and demand more gaze time, thus increasing the probability of being chosen as snacks by participants.

Says Krajbich of data analytics: “It’s a window into decision making.”

Share this page
Suggested Articles
Key accomplishments: TDA's 2016 Status Report

Assembling a dynamic community of faculty affiliates is one of Translational Data Analytics’ greatest achievements since its launch in 2014. TDA’s 2016 Status Report illustrates other notable progress toward convening...

Call for Women in Analytics speakers

The Women in Analytics Conference is seeking speakers for its event that will be held in Columbus March 15. The conference will bring together “analytic professionals, entrepreneurs, and academia to discuss...

Why governments have the right to require masks in public

Requirements for consumers to wear masks at public places like retail stores and restaurants are very similar to smoking bans, according to three university experts.  Writing in the American Journal...

Networking event builds an analytics community for businesses and students

Translational Data Analytics connected leaders from more than 63 tech companies and students with data analytics skills at a special networking event held April 19 at the Faculty Club. TDA...

Panda recognized as "rock star"

TDAI affiliate and computer science and engineering professor DK Panda is officially a rock star, according to insideHPC. This month the blog features Panda in its “Rock Stars of HPC” series,...